

Lessons learned from one of New Zealand's most challenging civil engineering projects: rebuilding the earthquake damaged pipes, roads, bridges and retaining walls in the city of Christchurch 2011 - 2016.

SCIRT and EQC Liquefaction Trial Report

Story: Liquefaction Trial Report

Theme: Design

A report detailing the Liquefaction Trial, the observations and discussions of the trial interpretation and findings.

This document has been provided as an example of a tool that might be useful for other organisations undertaking complex disaster recovery or infrastructure rebuild programmes.

For more information about this document, visit www.scirtlearninglegacy.org.nz

This work is licensed under a Creative Commons Attribution 3.0 New Zealand License.

The authors, and Stronger Christchurch Infrastructure Rebuild Team (SCIRT) have taken all reasonable care to ensure the accuracy of the information supplied in this legacy document. However, neither the authors nor SCIRT, warrant that the information contained in this legacy document will be complete or free of errors or inaccuracies. By using this legacy document you accept all liability arising from your use of it. Neither the authors nor SCIRT, will be liable for any loss or damage suffered by any person arising from the use of this legacy document, however caused.

Programme funded by
New Zealand Government

Fulton Hogan

Liquefaction Trial Report

Project :	SCIRT and EQC Liquefaction Trial
Revision :	2
Date :	9/09/2015

Document Control

	Name	Date
Author(s):	Marcus Gibson	17 March 2015
	David Rowland	17 March 2015
Reviewer(s):	Grant Newby	30 March 2015
	Tony Gordon	6 May 2015
Peer Reviewer (if required):	Dick Beetham	19 March 2015
Design Manager:	Paula Lock	15 May 2015
Value Manager:	Rod Cameron	15 May 2015

Contents

Exe	cutive	Summa	ary		
1	Introduction1				
2	SCIRT and EQC Liquefaction Trial				
	2.1	Purpos	se 1		
	2.2	Limitat	ions 1		
3	Trial	Site			
	3.1	Locatio	on2		
	3.2	Reviev	v of Historic Aerial Photography2		
	3.3	Canter	bury Earthquake Sequence		
		3.3.1	Strong Ground Motion		
		3.3.2	Canterbury Earthquake Sequence Land Damage Site Observations		
	3.4	Groun	d Conditions 5		
		3.4.1	Geology5		
		3.4.2	Geotechnical Investigations		
		3.4.3	Soil Profile6		
		3.4.4	Groundwater Profile		
		3.4.5	Liquefaction Potential		
4	Trial	Design	c		
	4.1	Infrast	ructure Tested		
	4.2	Infrast	ructure Installation		
	4.3	Explos	vive Design and Sequencing11		
	4.4	Trial In	nstrumentation11		
	4.5	Monito	pring 12		
5	Reco	orded In	formation12		
	5.1	Field C	Dbservations		
		5.1.1	Construction Monitoring		
		5.1.2	Explosive Liquefaction Triggering14		
		5.1.3	Exhuming15		
	5.2	Instrun	nentation and Monitoring Records18		
		5.2.1	Ground Motion18		
		5.2.2	Pipeline Performance		
		5.2.3	Liquefaction Induced Settlement19		
		5.2.4	Pore Pressure Assessment22		

6	S Analysis and Interpretation			26
	6.1	Theory	/	26
		6.1.1	Liquefaction Triggering	.26
		6.1.2	Buoyant Uplift	.27
		6.1.3	Liquefaction Induced Ground Settlement	.30
		6.1.4	Bearing Capacity	.30
	6.2	Assess	sment of Performance of Buried Infrastructure	30
		6.2.1	Liquefaction and Liquefaction Induced Settlement	.30
		6.2.2	Chamber Performance	.31
		6.2.3	Pipeline Performance	.34
7	Earth	quake	Rebuild Infrastructure Resilience	36
8	Reco	mmend	lations and Conclusions	37
9	References			38

Appendices

Appendix A	Photographic Records
	i notograpine recoluz

- Appendix B Geotechnical Investigation Data
- Appendix C As Built Details
- Appendix D Construction QA Records
- Appendix E Explosion Ground Motion Data
- Appendix F Pore Pressure Transducer Results
- Appendix G Survey and Settlement Data
- Appendix H Uplift Calculations

Revision History

Revision	Date	Name	Brief Description
А	16/03/2015	Marcus Gibson & David Rowland	Draft for comment
В	17/03/2015	Marcus Gibson & David Rowland	Draft for comment
С	13/04/2015	Marcus Gibson	For Approval
1	20/05/2015	David Rowland	Issue
2	09/09/2015	David Rowland	Updated Issue

Abbreviations

Abbreviation	Description
BH	Borehole
CCC	Christchurch City Council
CCTV	Close circuit television
CERA	Canterbury Earthquake Recovery Authority
CES	Canterbury earthquake sequence
CPT	Cone Penetration Testing
CSS	CCC Construction Standard Specifications
DEM	Digital elevation model
DN	Diameter nominal
EQC	Earthquake Commission
HDPE	High-density polyethylene
IDS	Christchurch City Council Infrastructure Design Standard
Lidar	Light detection and ranging
MH	Manhole
NZTA	New Zealand Transport Agency
PE	Polyethylene
PGA	Peak ground acceleration
PPT	Pore pressure transducer
PVC-U	Unplasticised polyvinyl chloride
RL	Reduced elevation, to CCC Drainage Datum (MSL= 9.043mRL)
SCIRT	Stronger Christchurch Infrastructure Rebuild Team
VSVP	Cross hole S and P wave velocity testing

Executive Summary

Christchurch's below ground horizontal infrastructure was subjected to very strong ground motion during the Canterbury Earthquake Sequence (CES) through 2010/2011. Extensive and repeated liquefaction triggering led to heavy damage to Christchurch's infrastructure. Assessment during the wastewater, stormwater and water supply infrastructure rebuild identified that the most significant modes of failure were associated with differential settlement due to post liquefaction volumetric reconsolidation, lateral spread, dynamic structural failure, and in some instances buoyant uplift. Subsequently the Christchurch City Council (CCC) infrastructure design standards were amended to incorporate more conservative detailing aimed at providing greater earthquake resilience. Changes were made to pipe and chamber material selection, design detailing, and backfill material type.

The Stronger Christchurch Infrastructure Rebuild Team (SCIRT) and Earthquake Commission (EQC) Liquefaction Trial provides a controlled field assessment of the performance of below ground infrastructure in simulated liquefied soils. A range of pipes, chambers and backfill materials were assessed at the trial site of 31/31A Ardrossan St within the CERA Residential Red Zone in Avondale. EQC agreed to allow SCIRT to undertake the trial in parallel with the EQC ground improvement trial. The SCIRT trial was developed and implemented to assess design assumptions, and to observe and quantify the improvement in resilience provided by changes to the infrastructure design standards in a controlled and monitored field situation.

Liquefaction was triggered within the soils through a sequenced detonation of explosives within an array of boreholes. The EQC ground improvement trial technical team assisted with blast design and instrumentation, incorporating findings from the earlier phases of their work. Data captured by inspection throughout the trial (construction though to exhumation), survey monitoring and instrumentation is analysed and interpreted in this report. Discussions on detailed trial interpretation and findings are presented.

Interpretation of the trial observations and data supports geotechnical design theory of the anticipated performance and modes of failure. The performance of the buried infrastructure in the trial is in line with the examples of existing infrastructure that generally provided good observed performance in Christchurch during the CES.

The trial provides a legacy of evidence to support the resilient design solutions incorporated into the SCIRT rebuild, which are assessed to be pragmatic and practical, exhibiting an appropriate level of resilience and optimised value. The standard details used by SCIRT are appropriate for the majority of conditions in Christchurch and other locations which exhibit susceptibility to liquefaction. During a significant earthquake damage to Christchurch's buried infrastructure will occur, requiring repair or replacement. However, the resilient design improvements will provide a positive benefit in post disaster functionality and assist with enabling a more controlled and programmed rebuild.

1 Introduction

Christchurch's below ground horizontal infrastructure was subjected to very strong ground motion during the Canterbury Earthquake Sequence (CES) through 2010/2011. Extensive and repeated liquefaction triggering led to heavy damage to Christchurch's wastewater, stormwater and water supply infrastructure, as well as to roads and other facilities.

Assessment during the rebuild identified that the most significant mechanisms leading to earthquake damage of buried infrastructure were; differential liquefaction induced settlement due to post liquefaction volumetric reconsolidation, lateral spread, dynamic structural failure, and in some instances buoyant uplift. Subsequently the Christchurch City Council (CCC) infrastructure design standards were amended to incorporate more conservative detailing aimed at providing greater earthquake resilience. Changes were made to pipe and chamber material selection, design detailing, and backfill material type.

Stronger Christchurch Infrastructure Rebuild Team (SCIRT) identified an opportunity to undertake full scale field trials to assess design assumptions, and to observe and quantify the improvement in resilience provided by changes to the infrastructure design standards (Construction Standard Specifications, CSS). The Earthquake Commission (EQC) was preforming full scale ground improvement field trials within the Canterbury Earthquake Recovery Authority (CERA) Residential Red Zone, using a series of explosive charges to trigger liquefaction. EQC agreed to allow SCIRT to undertake a parallel field trial and provided access to the EQC ground improvement technical team to assist with blast design and instrumentation monitoring. The trial design and implementation was undertaken over a very tight timeframe of 7 weeks, liquefaction was triggered on the 24 October 2013.

This report documents the implementation of the SCIRT and EQC Liquefaction Trial, data gathered, observations and their interpretation. Learnings and comments of the resilience of below ground horizontal infrastructure currently being constructed as part of the Christchurch rebuild are provided along with recommendations for potential modifications to improve resilience.

2 SCIRT and EQC Liquefaction Trial

2.1 Purpose

The purpose of the Liquefaction Trial is to assess the effects of liquefaction on below ground infrastructure in a controlled and closely monitored field situation. Information gained from the trial will be used to validate theory, provide a field assessment of infrastructure performance, and to assess severity of risk and consequence of modes of damage. The trial results have informed SCIRT designers who are reviewing the appropriateness of current CCC standard details and proposed alternatives.

2.2 Limitations

The following limitations of the trial need to be considered during the assessment and interpretation of results:

- The Liquefaction Trial only assesses the vertical effects of liquefaction on buried infrastructure. Deformation and forces imparted onto buried infrastructure associated with the dynamic effects of strong ground motion and lateral spreading are not replicated in the trial.
- Recorded buoyant uplift displacement of chambers would likely be unconservative due to the short duration of shaking and influences of the surface crust.

• The statistical validity of the trial is low as it only preforms one test event, in a discrete location and for a specific set of buried infrastructure.

However, the test provides a good practical assessment which can be compared to theory and observations of infrastructure performance during the CES. Interpretation considering the limitations has informed decision making by SCIRT designers.

3 Trial Site

3.1 Location

The 620 m^2 SCIRT and EQC Liquefaction Trial site at 31 and 31A Ardrossan St is located in Avondale, on flat ground on the inside of a meander 70 m from the Avon River. The site and adjacent land is within the CERA Residential Red Zone. Figure **1** provides the location of the trial site.

Figure 1 Location for the SCIRT and EQC Liquefaction Trial [Aerial photo flown 24 February 2011]

3.2 Review of Historic Aerial Photography

Review of aerial photography of the trial site between 1941 and the present has identified that the land use at the site was rural farmland up until the early 1960's, then fill materials were slowly and

progressively placed on this low lying floodplain on the inside of the river mender. Residential development accelerated in the early 1970's with ongoing subdivision.

3.3 Canterbury Earthquake Sequence

The area around the trial site exhibited poor performance during the CES with major to severe liquefaction and lateral spread observed.

3.3.1 Strong Ground Motion

The earthquake characteristics and estimated ground accelerations from the significant earthquakes during the CES are provided in Table 3-1.

Table 3-1 Strong Ground Motion experienced during the Canterbury Earthquake Sequence

Earthquake	Magnitude (M _w) ⁽¹⁾	Duration (seconds) ⁽¹⁾	Peak Horizontal Acceleration ⁽²⁾
4 September 2010	7.1	~50	0.18g
22 February 2011	6.2	~13	0.36g
13 June 2011	6.0	~10	0.24g
23 December 2011	5.9	~8	0.30g

(1) Earthquake data sourced from <u>www.geonet.org.nz</u>

(2) Conditional Peak Ground Accelerations (PGA) at the site developed for conventional liquefaction assessments by Bradley Seismic Ltd. and the University of Canterbury, sourced from, <u>https://canterburygeotechnicaldatabase.projectorbit.com</u>

3.3.2 Canterbury Earthquake Sequence Land Damage Site Observations

Recent seismic activity has been observed to have liquefied the ground and induced settlement and lateral spreading at the trial site. The severity of land damage at the site and surrounding area was high, resulting in CERA designating the land residential red zone.

Key observations at the trial site and surrounding area during the CES were:

- Evidence of liquefaction with release of minor to major volumes of ejecta fine sands on the trial property, adjacent properties and road corridor, during all of the major earthquakes during the CES (Table 3-1).
- Moderate to severe lateral spread during the 22 February 2011 and 13 June 2011 earthquakes.
- LiDAR Digital Elevation Model (DEM) settlements (corrected for tectonic subsidence) recorded of 0.5 m to 1.0 m, with majority of the liquefaction induced settlement occurring during the 22 February 2011 event (100-400 mm).

Figure 2 provides LiDAR DEM settlement for the 22 February 2011 earthquake, EQC observations of liquefaction and lateral spread on properties, and EQC mapped cracks.

EQC - LiDAR DEM vertical elevation change 22 February 2011⁽¹⁾

EQC - Surface observations of lateral spreading and liquefaction (22 Feb 2011)

Figure 2 EQC Data inferring extent and surface observation of severity of lateral spread and liquefaction at the trial site and adjacent area Source <u>https://canterburygeotechnicaldatabase.projectorbit.com</u>, refer Earthquake Commission Disclaimer

(1) LiDAR vertical elevation change corrected for tectonic movement.

EQC - Recorded crack locations and widths (4 Sept 2010 to post Feb 2011)

Ground Surface Observation Categories

3.4 Ground Conditions

3.4.1 Geology

The 'Geology of the Christchurch Urban Area' (Brown & Weeber, 1992) geological map indicates that the near surface geology of the trial site is comprised of alluvial sand and silt overbank deposits of the Springston Formation, and the Christchurch formation comprising dominantly sand of fixed and semi-fixed dunes and beaches.

A map of the area from 1856 (the 'Black Maps') shows a swamp to the east and flax rushes to the south of the site. Prior to residential development in the 1960's and 1970's, the land was filled to form building platforms.

3.4.2 Geotechnical Investigations

Geotechnical investigations were performed by the EQC ground improvement project team on and adjacent to the SCIRT trial site. The investigations include one borehole (BH), six cone penetrometer tests (CPT), and three cross hole seismic tests (VSVP), all up to 10 m depth. Figure 3 provides an investigation layout plan. Investigations were supervised and boreholes logged by geotechnical engineers and engineering geologists from Tonkin & Taylor Ltd. The investigation logs are included in Appendix B, all investigation data is available on the Canterbury Geotechnical Database¹.

In addition, excavation faces were logged during the installation and exhumation of the infrastructure.

Figure 3 Location of Trial Geotechnical Investigations

www.canterburygeotechnicaldatabase.projectorbit.com

Investigation ID ⁽⁴⁾	Easting (mE) ⁽¹⁾	Northing (mN) ⁽¹⁾	RL (m) ⁽²⁾	Depth (m bgl) ⁽³⁾	Date Drilled	Adjacent Investigation
BH 34459 (AVD-TCR01-BH07)	2484666.2	5745060.1	10.69	10.5	30/8/2013	CPT 34407
CPT 34404 (AVD-TCR01-CPT076)	2484658.7	5745099.1	10.79	10.1	10/9/2013	-
CPT 34405 (AVD-TCR01-CPT077)	2484685.5	5745062.2	10.63	10.1	10/9/2013	-
CPT 34406 (AVD-TCR01-CPT078)	2484683.7	5745095.3	10.96	10.1	10/9/2013	-
CPT 34407 (AVD-TCR01-CPT079)	2484664.4	5745059.9	10.68	10.1	10/9/2013	BH 34459
CPT 34453 (AVD-TCR01-CPT098)	2484712.7	5745100.1	10.82	10.1	10/9/2013	-
CPT 34454 (AVD-TCR01-CPT099)	2484703.4	5745063.7	10.42	10.1	10/9/2013	VSVP 38180
VSVP 38168 (AVD-TCR01-XH23)	2484695.2	5745080.1	10.64	6	6/10/2013	-
VSVP 38179 (AVD-TCR01-XH25)	2484703.0	5745089.7	10.74	6	6/10/2013	-
VSVP 38180 (AVD-TCR01-XH26)	2484703.0	5745062.6	10.44	6	6/10/2013	CPT 34454

Table 3-2 Summary of Geotechnical Investigations

(1) Coordinate System: NZMG

(2) Datum Reference: CCC Drainage Datum

(3) Meters below ground level

(4) Investigation ID's provided correspond to those on the Canterbury Geotechnical Database (https://canterburygeotechnicaldatabase.projectorbit.com)

Soil samples from BH 34459 were taken for laboratory testing to determine grading curves and Atterberg Limits for the soil horizons. The Springston Formation silts and silty sands within the upper 2 m of the soil profile exhibited a fines content of typically 20-60 %, with the underlying Christchurch Formation typically having a fines content of <10 %. A Plasticity Index of 9 was recorded at 1.1 m depth within the Springston Formation silts.

3.4.3 Soil Profile

The subsoil profile encountered was typically 1 m thick non-engineered and highly variable sandy silt and silty sand fill, with inclusions of gravel. The upper 1.0 m to 2.6 m of the soil profile is dominated by alluvial over-bank deposits of the Springston Formation comprising variable silty sands and sandy silts. Layers of silt with clay like behaviour were identified between 2.2 m and 2.6 m depth towards the southern end of the site. Loose to medium dense clean sands (<10 % fines) of the Christchurch Formation dominate the remainder of the near surface soil profile.

Summary plots of shear and primary wave velocity, cone resistance and soil type behaviour index for the investigations are provided in Appendix B.

Excavation cut faces exposed during installation and exhumation of the infrastructure identified that the soil profile within the upper 2-3 m is highly variable in soil composition and is inconsistent with significant changes observed over short distances. Photos of excavation faces are provided in Appendix A. The subsoil profile and parameters adopted for analysis are presented in Table 3-3.

Table 3-3 Typical Soil Profile at Trial Site

Layer No.	Geological Unit	Description	Depth to top of layer (m bgl)	Thickness (m)	CPT cone resistance q _c (MPa)	Soil type behaviour index, I _c	Shear wave velocity (m/s)
LO	Fill	Non-engineered fill materials: silty sand, sand, and silt, with inclusions of gravel and organics. High variability in material type.	0	0.5 – 1.3 (typ. 1)	1 – 10 (typ. 5)	1.0 – 2.6 (typ. 2.0)	-
L1	Springston Formation	Lenses of firm / loose silty sand, sand and silt, with trace gravel and organics. Incorporates historic topsoil layer at top of unit.	0.5 – 1.6	1 – 2	1 – 4 (typ. 2)	1.8 – 2.7 (typ. 2.2)	105 - 115
L2	Christohurah Formation	Loose fine sand with minor silt, with occasional silt lenses, trace organics.	2.3 - 3.0	1 – 3	5 – 7 (typ. 6)	1.4 – 2.6 (typ. 1.6)	110 - 150
L3		Medium dense fine sand with minor silt, with occasional silt lenses, trace organics.	3.6 – 5.2	>7	7 – 13 (typ. 10)	1.4 – 2.6 (typ. 1.6)	150 - 180

3.4.4 Groundwater Profile

Groundwater conditions were assessed from records of site observation, interpretation of pore pressure transducers (PPTs), CPT testing and adjacent EQC groundwater monitoring wells (Canterbury Geotechnical Database, 2014). The adopted near surface groundwater level was at a depth of 1.1 m (9.53 mRL), associated with perched water tables. Bias was placed on site observations, due to seasonal variability of groundwater levels. Measured static pore pressure within the Christchurch Formation infers a lower ground water level of 1.9 m below the ground surface.

3.4.5 Liquefaction Potential

The Liquefaction Trial utilises a series of explosives detonated in a defined sequence to induce cyclic shearing of the soil to induce excess pore pressure triggering liquefaction. The synthetic strong ground motion produced is significantly different to that generated by a natural earthquake, being of high frequency with very high ground accelerations. Standard empirical methods of liquefaction assessment are not appropriate and cannot be used to predict liquefaction triggering for the trial. Triggering of liquefaction during the trial is to be verified through measurement of excess porewater pressure through the ground profile.

However, relative liquefaction potential of the soils at the site has been assessed though varying peak ground accelerations (PGA) during a standard liquefaction assessment. The method and assumptions of the liquefaction assessment are summarised as follows:

- The liquefaction assessment of the CPT data, has been carried out in general accordance with the New Zealand Geotechnical Society (2010) Guidelines following the methods developed by Idriss & Boulanger (2008)
- The liquefaction potential of ground materials has been assessed using the available CPT and shear wave velocity data
- Consideration has been made of potential for liquefaction of soil type from review of the soil type behaviour index, laboratory testing, and soil descriptions
- Cross hole seismic testing with P waves infers that the upper 3 m to 4 m of the ground profile has saturation ratio of less 98.5%, indicating that in this condition this upper layer has low potential for liquefaction (Stokoe et al, 2014)
- A groundwater level of 9.53 mRL has been adopted

The liquefaction assessment indicates liquefaction triggering at the site for peak ground accelerations (PGA's) of ~0.1 g ($M_w7.5$) with extensive liquefaction within a zone affecting the buried infrastructure developing with PGA's of 0.15 g to 0.20 g ($M_w7.5$). The Springston Formation silts found in the southern portion of the trial site have been assessed to have low liquefaction potential. Figure 4 summarises the relative liquefaction potential of four of the CPT's.

Figure 4 summarises the relative liquefaction potential of the soil profile assessed for the CPT's showing spatial variability across the trial area.

Figure 4 Relative Susceptibility of Soils to Liquefaction

4 Trial Design

4.1 Infrastructure Tested

The design of the trial attempted to maximise the range of infrastructure tested within the site constraints and optimise trial costs, so that maximum benefit could be realised. Careful consideration was given to selecting the specific infrastructure components and materials for the trial. The components comprise pre-earthquake standards, alternative resilient solutions that had been adopted in the rebuild and others which were subject to debate within SCIRT at the time. Table 4-1 provides a summary of the eight assemblies incorporated into the trial with discussion on the purpose and details involved.

Table 4-1 Summary of Trial Infrastructure and Purpose

Test ID	Assembly	Purpose and Details
1	DN150 PVC-U SN16 pipe with easily compacted granular haunching within trench	SCIRT was exploring possible alternative pipe haunching aggregates with low sensitivity to effects of water during placement, to improve construction efficiencies. Though not being considered as a haunching aggregate, Grade 2 sealing chip aggregate (NZTA M6) was selected as an extreme high void ratio nil fines alternative for the trial to allow comparison with a well graded material (Test 2).
2	DN150 PVC-U SN16 pipe with well graded haunching within trench. CCC CSS design standard.	This test provides a baseline assessment of seismic performance of existing CSS and SCIRT pipe and trench design, incorporating NZTA M4 AP20 a well graded aggregate.
3	Pressure Sewer Chamber (PE) – Granular backfill relieving porewater pressure	This is to review the performance of a chamber backfilled with highly permeable material. The trial utilised Grade 2 sealing chip aggregate (NZTA M6) encased within a sewn geotextile bag. The test aimed to quantify the reduction of uplift pressure, comparing observations with design assumptions. Also to assess the risk of clogging the geotextile and ingress of ejecta into the backfill during a liquefaction event.
4	Pressure Sewer Chamber (PE) – Backfill with compacted excavated materials. In accordance with supplier installation details.	This test provides a base line assessment of seismic performance of chambers backfilled with natural excavated materials (fine sand). The test allows an assessment of theory and comparison with the current CCC CSS standard details.
5	1050 mm dia concrete access chamber with connecting PVC- U SN16 pipe, backfilled with AP65 gravel.	This allowed assessment of seismic performance of a CCC CSS standard access chamber, comprising a proprietary precast concrete access chamber with CCC AP65 backfill. The test aimed to quantify the effects of a well graded granular backfill on uplift pressure on the chamber. The test also allowed a review of the interface between connecting pipes.
6	DN600 PE access chamber with connecting PVC-U SN16 pipe, backfilled with AP65	This aspect is a field test of seismic performance of a PE access chamber with CCC AP65 backfill. Key elements being reviewed were the same as for Test No. 5.
7	Pressure Sewer Chamber (PE) – Low strength concrete backfill	This was intended to review performance of a chamber backfilled with low strength concrete, adding weight to resist buoyant uplift.
8	DN150 Restrain PVC-U SN16 pipe installed by directional drilling	This assesses field performance of a directly drilled pipeline in liquefied soil. An alternative pipe material Restrain TM pipe was used for this test (threaded socket and spigot joint).

4.2 Infrastructure Installation

Chambers were installed inside the blast rings, the zone anticipated to liquefy, to allow assessment of buoyant uplift and interface with connecting pipe infrastructure. The pipes were installed from the chambers extending beyond the blast rings, to transition from non-liquefied into liquefied ground to allow assessment of the effects of soil liquefaction potential and associated liquefaction induced settlement on pipe dips and structural performance. The trial layout is provided in Figure 5.

Installation of the infrastructure was performed by the McConnell Dowell SCIRT Delivery Team, constructed in accordance with the CCC Construction Standard Specification (CSS) supported by SCIRT specifications.

Figure 5 Site Layout for SCIRT and EQC Liquefaction Trial

4.3 Explosive Design and Sequencing

Explosive design and sequencing was developed by the EQC trial technical team, incorporating findings and efficiencies learnt during the EQC ground improvement trials preformed prior. Liquefaction was triggered though detonation of 42 charges in 14 blast holes arranged in two overlapping 10 m diameter circles (refer Figure 5). Three levels of explosive charges were installed in each blast hole, 0.8 kg charge of Orica Pentex PPP plastic explosive at 2.5 m depth and 2.4 kg charges at depths of 6.5 m and 10.5 m. The explosives were detonated in a pre-set sequence, with 300 ms intervals for the low and middle levels and 135 ms for the upper level, alternating across the circles for a total duration of 10 seconds, intended to induce cyclic shear strains in the soil, triggering liquefaction. The explosive charges were detonated on 24 October 2013.

4.4 Trial Instrumentation

Instrumentation and monitoring was incorporated into the trial design to provide baseline measurement of the installed condition of infrastructure, response of the ground to the synthetic cyclic shearing, and the resulting performance of the ground and installed infrastructure. Observation of infrastructure condition change during the detonation was performed by video inspection. Table 4-2 provides a summary of trial instrumentation and monitoring.

Table 4-2 Summary of Trial Instrumentation and Monitoring

ltem	Monitoring	Purpose
Instrumentation		
Vibrating wire piezometers / pore pressure transducers (PPT)	Continuous	 PPT installed beneath chambers (No. 5) to measure uplift pressure. PPT installed within the soil profile to record excess pore pressure and confirm liquefaction triggering. Installed at depths of; 2.8 m, 3.9 m, 4.65 m, 6.95 m, and 9 m.
Accelerometer	Continuous	• An accelerometer was placed on the ground surface during the trial to record the surface ground accelerations during explosive detonation.
Monitoring		
Survey and levelling of discrete points	Discrete	 Spatial location and elevation of all installed infrastructure is recorded to provide baseline condition, and following the detonation of explosive charges to record changes
Vertical settlement profilometers	Discrete	 Settlement profiles provide data on liquefaction induced settlement with depth though the soil profile. Two profilometers were installed within the anticipated zone of liquefaction triggering and one beyond. The profilometers were calibrated prior to blasting and the settlements measured immediately following the blasting and again a day later.
Profilometer for pipe grade	Discrete	 Recording the vertical profile of pipelines installed, prior to and following the trial to identify total and differential settlements.
Laser profiling for pipe ovality	Discrete	 Pipe ovality was measured along the length of pipes installed, both prior and following liquefaction.
CCTV inspection of pipes	Discrete	 CCTV inspection of the pipelines to provide a visual condition survey prior and following the trial.
Ground surface LiDAR	Discrete	 Pre and post LiDAR DEM survey of the site.
Video recording	Continuous	 Aerial video recording of site from a drone during and following detonation of the explosive charges. Land based high speed video recording of the trial (No. 4 devices)

4.5 Monitoring

All phases of the trial were closely monitored to maintain a good understanding of the as built condition and condition of infrastructure following liquefaction triggering. Monitoring was performed by SCIRT geotechnical and civil engineers and the McConnell Dowell Delivery Team implementing construction.

5 Recorded Information

A large volume of data was collected though installation, monitoring of the liquefaction triggering and exhuming infrastructure. Recorded information is presented in the appendices, with summary discussion provided in the following subsections.

5.1 Field Observations

5.1.1 Construction Monitoring

Installation of the infrastructure was coordinated by the McConnell Dowell Delivery Team. The physical works were subcontracted to civil contractor Tru-Line Civil Ltd, and were undertaken over the period of 8 October 2013 through to 21 October 2013. The weather conditions during construction were inclement, which delayed construction.

SCIRT geotechnical and civil engineers undertook daily construction monitoring of the installation of the infrastructure, review of ground conditions and installed the PPT beneath the chambers. Photos of the installation of the infrastructure are provided in Appendix A, and construction standard details, material specifications and as built records are provided in subsequent Appendices.

Key observations during construction monitoring are provided below:

- The groundwater was encountered at a depth of approximately 1.1 m depth across the site. The site was dewatered with a series of dewatering spears of 6-7 m length installed at typical spacing's of 1-1.5 m.
- The upper 3 m of the ground profile exposed during construction was highly variable. Fill materials comprising a mixture of gravel, silt and sand overlaid Springston Formation silts and silty sands. The materials encountered were loose to medium dense, and generally exhibited non plastic to low plasticity behaviour. The silt content within the soils and the visually assessed resistance to liquefaction triggering was higher than was desired; however programme constraints and lack of alternative sites for the testing prevented relocation of the trial.
- Observation identified that achieving accuracy in excavation dimensions can be challenging. Designers should consider the reasonably anticipated variance in excavation dimensions in the field, and consider influence on design intent. This was of most concern in the trial for Test 7, with low strength concrete backfill. Where the design dimensions were not achieved due to over excavation and uncertainty of accurate concrete volumes during construction. Selection of robust designs which can accommodate variation in as built dimensions, resilient backfill designs, and use of precast elements are recommended.
- Well graded backfill materials assisted with ease of construction, unlike uniformly graded materials which exhibited tendency to undermine adjacent structures and to unravel to a moderate slope angle (35° to 40°).
- Constructing the interface between connecting pipework and the pressure sewer for Test 7
 was challenging. To prevent the concrete encapsulating the connecting pipe limiting ability
 to flex or to be replaced in the future, a void was created with a an oversized PVC-U pipe
 acting as a former, and use of expanding foam and geotextile wrapping to prevent ingress
 of concrete and backfill aggregates. Construction to ensure the void was maintained along
 with adequate clearances was fiddly and time consuming.
- PPT were installed directly beneath manholes by SCIRT engineers. Prior to installation the transducers were de-aired by Geotechnics Ltd and a water filled glove fingertip was taped to the end of the PPT to maintain saturation. The PPT were installed within native soil or backfill materials, surrounded in a small quantity of sand to protect the transducer during construction of the chamber above. Where the backfill was uniformly graded, the PPT sand bedding was encapsulated within geotextile.

• Site constraints resulted in the vertical alignment of the Test 8 pipeline, reaching, but not exceeding, the manufacturer's stated minimum radius of curvature for the Iplex Restrain[™] pipe (48 m).

5.1.2 Explosive Liquefaction Triggering

An exclusion zone (>100 m) around the trial site during explosive detonation was maintained to ensure public safety. The explosive liquefaction triggering was video recorded by a drone with a GoPro video camera providing aerial coverage, and the four land based high speed cameras. Following the site being declared to be safe to access, the SCIRT project team inspected the site post liquefaction triggering. Key observations from review of the video coverage and visual inspection following the trial on the 24 October 2013 are summarised below:

- The explosive charges appeared to be effective in inducing excess pore pressure and triggering liquefaction. All explosive charges detonated as planned.
- The volume of liquefaction ejecta material released to the ground surface within the SCIRT trial site was limited. Ejecta released immediately upon completion of the strong ground motion for a period of 10-15 min. The ejecta, typically comprising a fine sand with minor silt, appears to have originated from the Christchurch Formation sands from a depth of greater than 3 m. Ejecta was observed to be released in the following locations;
 - borehole for the explosive charges to the southwest of the southern ring of charges
 - borehole for a PPT within the northern ring of charges
 - adjacent to Test 7 and Test 4 chambers.

The limited liquefaction ejecta observed at the ground surface is likely due to resistance of rapid porewater migration provided by the cohesive nature of the upper 2-3 m of the ground profile, comprising interbedded layers silt, silty sand and sand. The ejecta was expelled though the pathways of least resistance where the ground had been disturbed by the trial infrastructure construction activity, instrumentation or explosive charges.

- Ejecta was not expelled from the 6-7 m deep holes created by the dewatering wellpoints installed during construction of the trial. The civil subcontractor had backfilled the wellpoint holes with AP20 hardfill upon withdraw.
- No clear visual evidence to suggest that any of the chambers experienced gross buoyant uplift or that the ground had settled significantly relative to the chambers.
- Review of high speed footage indicates the strong vertical accelerations have induced near surface heave and minor vertical movements of the soil and infrastructure during detonation of the explosive charges (less than 20 mm). Cracking of the ground surface was observed.
- The high speed footage shows that the accelerometer which was placed on the ground surface did not move entirely integral with the ground, instead can be observed exhibit some minor bouncing on the ground. This could potentially account for some the very significant ground accelerations recorded.
- The explosive charges and triggering of liquefaction resulted in the groundwater at the site and surrounding property and road to rise by 0.4 to 0.7 m, which dissipated over a period of a few hours.
- No lateral spread occurred due to the localised liquefaction.

5.1.3 Exhuming

Following completion of the SCIRT explosive induced liquefaction trial, the site was exhumed to allow visual assessment of the performance of the buried infrastructure and ground. The site was exhumed in a controlled manner observed and directed by SCIRT geotechnical engineers over the period of 26 November 2013 to 2 December 2013. A summary of key observations during exhuming is provided in the following sections:

Chambers

The five chambers in the trial were carefully and incrementally exhumed by excavator and shovel. Key observations recorded during exhuming of the five chambers are presented below:

- No structural damage was observed on any of the chambers or the standard long socket and lplex manhole pipe connections.
- Ground movement relative to the chambers was recorded, with gaps between the backfill and pressure sewer chamber ribs (Test 3, 4 & 7). Roughly 20mm of movement at the ground surface reducing linearly to less than 5 mm at the water table, refer Figure 6. The relative displacements observed are not considered to be caused by buoyant uplift of the chamber. The most feasible explanation is the upward temporary heave of the near surface ground in response to the explosive blast energy and settlement of soil near the ground surface.

Figure 6 Photo showing Soil Separation from Pressure Sewer Chamber (Test 4)

- Evidence of deposits of liquefaction ejecta sand beneath and within some backfill material confirms that the chambers were exposed to substantial excess pore pressure.
- PPT were observed to be in an undamaged condition when exhumed. Testing by Geotechnics Ltd confirmed that post trial that excavated PPT's were operating normally.
- The highly permeable backfill in a sewn geotextile bag of Test 3 was observed to be free from ingress of fines. An inclusion of native sand which likely fell into the permeable backfill during construction was observed; material colour and composition did not match the liquefaction ejecta and matched the upper native soils. No evidence of any caking of fines

on the external face of the geotextile was observed. However, a thin (<1mm) coating of ejecta fine sand was observed to adhere to the native soils when the geotextile was peeled away.

- No observable changes could be seen in the natural backfill of Test 4 during exhuming.
- For the standard manhole (Test 5) backfilled with well graded AP65, there was evidence that liquefaction ejecta had permeated though discrete portions of the backfill. The amount of ejecta fines entrained and deposited within the well graded dense backfill was very minor. The ejecta was concentrated at the base, perimeter, and interface with the concrete manhole. No such observations were observed for Test 6.
- The as built dimensions and volume of concrete for Test 7 were recorded, exhuming confirmed variability in construction and deviation from the intended design. Concrete cores of the in situ cast low strength concrete identified an average density of 1550 kg/m³, this is less than the native soil, and did not satisfy the design intent (>2250kg/m³). The void former constructed to provide separation between the pipe and concrete backfill was successful in preventing ingress of concrete and native soil materials.

Pipelines

The three pipelines tests (Test 1, Test 2 and Test 8) were exhumed along with the three laterals connecting with the pressure sewer chambers. Key observations recorded during exhumation of the pipes are presented below:

- Liquefaction ejecta was observed to have intercepted pipe haunching and backfill materials in a small number of discrete locations (typically less than 0.2 m²). Key observations:
 - Most frequently observed in uniformly graded high permeability materials; however evidence was recorded in the well graded granular materials comprising NZTA M4 AP20 haunching and CCC AP65 trench backfill.
 - Ejecta materials were observed to enter from the base of the trench and migrate upward. This was clearly demonstrated where vertical intrusions showed limited lateral flow. Limited lateral flow of ejecta materials is likely associated with; negligible hydraulic gradient for groundwater flow through the backfill, self-filtering action, small volume of ejecta released into the near surface soils, and short duration of strong ground motion.
 - The fine sand deposited by the ejecta filled the void space between the solid particles, increasing the density and overall competence of the granular materials. The intrusions were comprised of fine sand within the centre with silt sized particles deposited around the edge (<50 mm). Beyond this ejecta intrusion and silt surround, the aggregate particles were clean and free of ejecta influence.
 - Deposition of ejecta materials into backfill materials did not adversely affect the suitability of the backfill post-earthquake, in all cases filling of void space between aggregate particles provided a denser higher quality backfill.
 - Near surface ejecta intrusion into uniformly graded materials was observed to terminate near the groundwater surface and/or interface with overlying well graded backfill materials.

Figure 7 Localised vertical Intrusion of Liquefaction Ejecta Sand into Trench Haunching

Figure 8 Localised vertical Intrusion of Liquefaction Ejecta Sand into Granular Backfill Materials

- There was no post blast structural damage observed to the pipes, with exception of Test 8.
- The directionally drilled pipeline of Test 8 sustained damage at a pipe joint near the interface with the southern edge of the explosive charges circle (<2 m separation to explosive detonation). The very large ground accelerations and shock waves differ from a natural earthquake; however the trial does highlight potential vulnerability of threaded socket and spigot connections to dynamic loading associated with the thinning of pipe wall thickness.
- The trial was unable to observe or measure any potential deformation of the trench walls or floor associated with liquefaction. Robust conclusions on risk and potential for migration of

fines from adjacent soil into the haunching and backfill cannot be drawn from this trial due to:

- The generally cohesive nature of the adjacent in situ soils, and
- The pore pressure transducer records at 2.0-2.5 m depth suggest that liquefaction may be localised within thin layers due to variability in the soil profile, majority of the liquefaction occurring at depths greater than 3 m.
- The Test 8 directionally drilled pipeline was observed to be surrounded with an annulus of 0-100 mm of very soft silt and clay (drilling muds). The DN150 pipe was not located centrally within the pipe, sitting at the top of the drilled 250mm dia hole due to the curvature of the drill string and static buoyant uplift within the drilling muds during installation. No obvious signs of flotation of the pipe within the native soil were observed.

General

Extensive excavation of the site while exhuming the buried infrastructure provided visual understanding of the variability of the soil profile over short distances within the upper 3 m. The soil layers were typically dominated by cohesive materials with some lenses of liquefiable loose silty sands and clean sands.

Evidence of paleo-liquefaction from multiple past earthquake events was uncovered across the site. Observed varying degrees of weathering in the ejecta materials within the intrusions, and observed intrusion though laterally stretched ground, indicates that the intrusions were not formed by the SCIRT and EQC Liquefaction Trial. The least weathered ejecta materials are likely from the CES. Typical observations are summarised below and in Appendix A.

- Thin (typically 10 mm) continuous cracks thought the ground profile filled with fine sand and silt, being ejecta paths. They are believed to be shaking induced cracks forming paths of weakness though the ground profile. On occasion these were observed to "bend" around more competent soil inclusions, or hit a cohesive or gravel layer and track horizontally for a short distance until a path of weakness through or around is found. No trend in alignment direction was observed.
- Fissures typically >50 mm (25-150 mm) wide and aligned sub parallel to the Avon River. The cracks were filled with fine to medium sand with trace fine gravel present. This pattern and ejecta material is similar to lateral spread cracks observed during the CES.
- Ejecta paths were observed in one case to terminate with a sand volcano which had been subsequently overlain by alluvial deposits.

5.2 Instrumentation and Monitoring Records

Raw data from trial instrumentation and monitoring has been analysed to support the review and interpretation of the trial observations. The following sections provide a brief description of the observations provided from analysis and assessment of the recorded data. Collated and manipulated data outputs are presented in their respective appendices.

5.2.1 Ground Motion

Detonation of the 42 explosive charges induced cyclic shearing of the ground with an excess of 20 cycles over a period of approximately 10 seconds. Recorded raw peak ground accelerations at the ground surface were 7 g and 23 g in the horizontal and vertical directions respectively. The high vertical acceleration is associated with the explosive charges focusing energy upward. The explosion ground motion data is provided in Appendix E.

The accelerations were significantly higher than a natural earthquake would produce and the short duration, high wave frequencies and low amplitude ground shaking are also not characteristic of a 'natural' earthquake. As discussed in Section 5.1.2, the accelerometer may have bounced on the ground and this could potentially account for some of the very significant ground accelerations.

5.2.2 Pipeline Performance

CCTV and ovality testing with a laser profiler was preformed pre and post liquefaction triggering to review structural performance of the Iplex Novadrain 1600 DN150 SN16 PVC-U pipe. The baseline testing prior to liquefaction triggering did not identify any construction non-conformities.

Post liquefaction assessment for pipelines of Test 1 and 2, and laterals for Test 3, 4 and 7 did not identify any non-conformities or observable change in pipe condition and ovality. However, damage to Test 8, the directionally drilled pipe, caused flooding and filling of the pipe with sand and hindered testing. All attempts to clean and flush the pipeline failed due to high inflows of sand and water. The pipe was exhumed in the location of the obstruction, uncovering a damaged joint on the Iplex 1600 RestrainTM pipe. Structural damage from shock loading associated with the close proximity of the explosive charges (~2 m separation) is thought to be the primary cause of the damage. Inflows of sand, likely contributed to the observed pipe settlement between chainage distances of 6 m to 13 m (refer Figure 9). The trial only assessed pre and post-trial pipe ovality. It is likely that during the detonation of the explosive charges and associated strong ground motion ovality deviations exceeded measured values. However, no evidence of effects affecting long term performance of the pipes could be observed.

The rate of pipeline differential settlement was relatively smooth, with a maximum rate of differential settlement of 5 mm/m recorded. No structural pipe damage was observed, this being expected as the deformation did not exceed the manufacturer's minimum radius of curvature. The greatest rate of differential settlement recorded was at the transition from the ground profile with extensive liquefaction though to non-liquefied soil, this was inferred from review of the LiDAR DEM.

5.2.3 Liquefaction Induced Settlement

The effects of liquefaction induced settlement on the buried infrastructure have been determined from assessment of the following testing:

- Pre and post topographical survey of specific points on the infrastructure.
- Profiler records for pipelines, recording change in vertical elevation along a pipe length.
- Vertical settlement profilers recording incremental ground settlement in 0.5 m layers to 10 m depth.
- Comparison of pre and post LiDAR DEM surfaces.

Figure 9 presents a LiDAR DEM map of liquefaction induced settlement of the ground across the site, and a plan showing a schematic representation of relative settlement along the pipe infrastructure. LiDAR DEM indicates different ground response from varying subsurface conditions. With total settlements of 120 - 180 mm within the northern blast ring, and significantly smaller settlements of 0 - 80 mm were recorded in the southern blast ring.

Ground surface observations correlated well with the 0 mm to greater than 150 mm recorded settlements across the site within pipes of Test 1, Test 2 and Test 8. And the negligible settlement observed within the southern blast ring was reflected with profiler readings within Test 8 at located approximately 3 m depth and spot levelling of the pressure sewer chambers (Tests 3, 4 and 7).

Liquefaction triggering at the EQC ground improvement trial located at 29/29A Ardrossan Street (immediately adjacent to the SCIRT trial site) 20 seconds prior to explosive detonation at the SCIRT trial site, induced larger magnitude liquefaction induced settlements over the western half of the SCIRT site. This is discussed further in Section 5.2.4.

Vertical settlement profilers (SP-1, SP-2 and SP-3) located in the positions depicted in Figure 9-[A] suggest that the settlement at the ground surface was 140 – 160 mm, correlating well to the LiDAR DEM. The rate of settlement was relatively uniform below the groundwater table to a depth of approximately 8 m, with a typical volumetric strain estimated to be 1-3 %. The settlement profiler beyond the blast circles (SP-3) shows similar magnitude of settlement to the profilers within the blast circles. However this does not correlate with the <50 mm settlement recorded by the LiDAR DEM and profiler in the Test 1 pipeline, indicating that SP-3 is in error.

The LiDAR digital elevation model of ground settlement suggests that liquefaction was triggered up to 5 m beyond the blast rings.

[A] – LiDAR DEM total settlement induced across trial site

[B] - Schematic assessment of relative settlement within pipe infrastructure recorded by profilometer

Figure 9 Variability in Liquefaction Induced Settlement of the Ground Surface and Pipe Infrastructure

5.2.3.1 Influence of Liquefaction Induced Settlement on Infrastructure

Pipelines

Liquefaction induced settlement of the ground beneath the buried pipelines and laterals connecting to the chambers resulted in corresponding equivalent settlements of the pipes. This is shown in Figure 9[B] where a close correlation can be seen between the relative settlement of LiDAR DEM

and the spatial settlement of the pipelines. The magnitude of pipe settlement was typically 100 mm, with a range of 50 mm to 160 mm. No evidence was observed to suggest that haunching or backfill material type influences the magnitude or rate of differential settlement. Differences were within error bounds of estimation/measurement.

The influence of variability of liquefaction induced settlement of the underlying ground on pipeline grade is clearly demonstrated by the pipe dips formed by differential settlement for the directionally drilled pipeline (Test 8). Figure 10 provides a cross section along the alignment of the pipeline showing both vertical deformation, both in real elevations and level difference. The observed negligible settlement of the Test 8 pipeline between chainage distances of 12 m to 19 m corresponds to negligible settlement of the ground surface and infrastructure within the centre of the southern blast circle. There is no evidence of buoyant uplift of the directionally drilled PE pipe founded within liquefiable soil.

The apparent uplift beyond chainage distance 37 m relate to the unsupported length of pipe in the access pit at the end of the pipeline.

Differential settlement was observed at the interface between chambers and connecting pipe infrastructure. The greater the depth the chamber is founded beneath a connecting pipeline, the greater the differential settlement. The observed magnitude of differential settlement was generally <10 mm, for a difference of 0 mm to 75 mm between foundation level and pipe connection. This observation is in line with the typical volumetric strain of 1-3 % inferred from the vertical settlement profilers.

Chambers

The chambers within the northern blast circle (Tests 5 & 6) have settled a similar magnitude as the underlying ground (refer Table 5-1).

The pressure sewer chambers within the southern blast circle (Tests 3, 4 & 7) recorded negligible change in reduced level. LiDAR survey records indicate that the surrounding ground has also exhibited only very minor settlements of <40 mm, and the directionally drilled pipeline installed 1 m beneath the foundation of the pressure sewer chambers recorded no settlement. During exhumation of the chamber with natural ground backfill (Test 4) settlement of the ground relative to the chamber of <20 mm was observed. This settlement differential was largest at the top of the chamber reducing with depth. It is concluded that the difference between chamber settlement and surrounding ground is likely a result of explosive heave and subsequent settlement of the near surface soil, or potentially compaction settlements during construction. Survey, monitoring and observations all infer that the pressure sewer chambers did not exhibit vertical uplift.

Table 5-1 Summary of measured Chamber Settlement

Chamber Description	ltem	Depth to chamber foundation (m)	Average chamber settlement (mm) ⁽¹⁾	Inferred ground settlement at base of chamber (mm) ⁽²⁾	Chamber displacement relative to estimated ground movement (mm)
PE Pressure Sewer Chamber	Test 3: Permeable backfill	1.85	-8	Est. 20 [Range: 0 – 50]	+12
	Test 4: Natural sand backfill	1.85	0	Est. 5 [Range: 0 – 10]	+5
	Test 7: Concrete backfill	1.85	-6	Est. 20 [Range: 0 – 100]	+14
Standard Concrete Manhole	Test 5: AP65 backfill	2.74	-93	Est. 100 [Range: 70 – 130]	+7
PE Manhole	Test 6: AP65 backfill	1.8	-155	Est. 150 [Range: 130 – 160]	-5

(1) Based on difference between pre and post blast level survey, on multiple positions on chamber.

(2) Estimated through review of LiDAR DEM, vertical settlement profilers, and profilometer records of pipeline settlement.

5.2.4 Pore Pressure Assessment

Excess porewater pressure recorded by PPTs allowed assessment of buoyant uplift pressure and confirmation of liquefaction triggering. Excess pore pressure was normalised to an excess pore pressure ratio (r_u) to simplify the assessment. Liquefaction is effectively triggered when r_u approaches 1. Figure 11 and Figure 12 present plots of excess pore pressure ratio against time within the natural ground and beneath the chambers respectively. Review of the calculated r_u values inferred that the explosives triggered extensive liquefaction down to the deepest installed at 9 m. With the exception of the PPT installed at 2.8 m depth in native soils which achieved a peak r_u of 0.6. PPT's within 2-3 m of the ground surface recorded varying levels of excess pore pressure, indicating liquefaction triggering levels had been reached (or close to). Following the detonation of explosives a liquefied state was maintained for up to 5 minutes as excess porewater migrated upward from the soil strata below. Delayed secondary liquefaction was observed in PPT's installed in native soils 2 to 3 minutes following explosive detonation.

Strong ground motion from the EQC ground improvement trial at 29/29A Ardrossan Street roughly 20 seconds prior to the SCIRT trial explosive generated excess pore pressure within the SCIRT PPT as shown in Figure 13.

Chamber Buoyant Uplift

Buoyant uplift forces exerted on the chambers were inferred from PPTs installed directly beneath the chambers. Figure 12 and Figure 14 present the calculated r_u from measured excess pore pressure for the five chambers, further detail is given in Appendix H. Measured excess pore pressure and uplift is discussed for individual chambers and backfill type below:

• Test 3: Pressure sewer chamber with high permeability backfill

It was observed that the excess pore pressure in the surrounding liquefied native soil was partially relieved though migration of water into the permeable backfill. The high permeability of the backfill limited the uplift pressure beneath the chamber to a static water head at the ground surface, which slowly dissipated following the test.

• Test 4: Pressure sewer chamber with native soil backfill

The PPT installed into silty sand beneath the chamber inferred that the native soil beneath the chamber liquefied.

Test 7: Pressure sewer chamber with concrete backfill

The PPT inferred that the native soil beneath the chamber liquefied. An important observation was that during liquefaction the pore pressure measured beneath the concrete encased chamber was equivalent to the initial total stress at that location.

• Test 5 & 6: Manholes with CCC AP65 well graded backfill

The maximum r_u recorded for the PPT installed within the CCC AP65 was 0.18 and 0.29 for Tests 5 and 6 respectively. The CCC AP65 is derived from quarried alluvial deposits in Canterbury and is typically characterised as having an elevated fines content and variable permeability, similar to the adjacent native soils (1x10⁻⁷ m/s to 1x10⁻⁴ m/s).

Figure 11 Excess Pore Pressure Ratio for PPT installed within native Soil

* Discrete Points shown as <10 data points measured exceeded the sensitivity threshold for the PPT.

Figure 13 Excess Pore Pressure Ratio for PPT installed within native Soil - Detail

Figure 14 Excess Pore Pressure Ratio for PPT installed beneath Chambers - Detail

* Discrete Points shown as <10 data points measured exceeded the sensitivity threshold for the PPT.

6 Analysis and Interpretation

6.1 Theory

Interpretation of trial observations and data requires consideration and comparison against current state of art theory of the process leading to liquefaction triggering, buoyant uplift and liquefaction induced settlement. The following sections provide a simplified summary of critical geotechnical theory influencing seismic performance of chambers and pipes in liquefied soil.

6.1.1 Liquefaction Triggering

Cyclic shearing of the soil associated with earthquake strong ground motion can induce excess porewater pressure. The resistance to shearing and generation of excess pore pressure is dependent on the soil density and physical properties. Where the permeability of the soil is insufficient to enable excess pore pressure generated to be completely relieved due to the rapid rate of cyclic shearing, net excess pore pressure for each cycle accumulates. As shaking levels increase beyond a point near the threshold for triggering of liquefaction the excess porewater pressures quickly increase with the shaking levels until liquefaction is triggered. Liquefaction triggers when the total excess pore pressure is equivalent to the initial effective stress (σ_{vo}). The reduction in effective stress leads to a reduction in soil shear strength, to a point where theoretical liquefaction is triggered, with complete loss of effective stress ($\sigma_{v'}$) and an excess pore pressure ratio (r_u) approaching 1. The significant loss of soil shear strength leads to the soil exhibiting physical behaviour similar to a dense viscous liquid. The process of development of excess porewater pressure with strong ground motion is visually explained in Figure 15.

6.1.2 Buoyant Uplift

Koseki, Matsuo & Koga (1997) investigated the uplift mechanism caused by liquefaction of the surrounding soil for a variety of underground structures through scaled laboratory testing on a shake table. This study concluded that utilising a FoS of equilibrium of vertical force acting on the structure was a reasonable method of assessing uplift potential. This was supported by further laboratory centrifuge testing performed by Sasaki & Tamura (2004), Kang, Tobita, Iai & Ge (2013), Chian, Tokimatsu & Madabhushi (2014).

6.1.2.1 Static Condition

Hydrostatic porewater pressure exerted perpendicular to submerged faces of a below ground structure induce a net uplift force. Calculation of buoyant uplift force within a hydrostatic fluid is simplified by Archimedes Principle, which states that the uplift force is equivalent to the weight of the fluid that is displaced by the object. Buoyant uplift displacement of the structure results when the Factor of Safety (FoS) to uplift reduces to below unity. This occurs when the static uplift force (*F*_B) exceeds the resistance provided by the weight of the structure (*F*_T), soil weight (*F*_{WS}) and shear strength of the overlying soil (*F*_{SP}), (Chian and Madabhushi, 2013).

$$FoS = \frac{F_B}{F_T + F_{WS} + F_{SP}}$$
 Equation 1

Figure 16 provides a schematic visually summarising buoyant uplift mechanisms for pipes and chambers under static conditions.

Figure 16 Schematic of typical buoyant Uplift Mechanisms – Static Conditions

6.1.2.2 Liquefied Condition

Seismic - Uplift Pressure

During strong ground motion as the porewater pressure increases the pressure exerted on a submerged structure also progressively increases until the point of liquefaction triggering, where the porewater pressure is equivalent to the initial total stress at a given depth (σ_{vo}). At this point the initial effective stress (σ_{vo}) has reduced to zero.

It is important to consider uplift pressure even when liquefaction is not triggered as FoS against uplift would be reduced. The magnitude of excess porewater pressure is dependent on the intensity and duration of shaking and the permeability of the soil.

Seismic - Buoyant uplift FoS

Development of excess pore pressure leads to a reduction in the FoS against buoyant uplift due to the following reasons (Koseki, et. al., 1997):

- Elevated buoyant uplift force associated with excess porewater pressure (*F*_{EPP}) induced within the surrounding soil by strong ground motion.
- Reduction of resistance associated with soil shearing due to reduction of effective stress.
- A reduction in the effective weight of overlying soil.
- Application of seepage forces associated with migration of excess porewater from soil layers below the structure migrating upward towards the ground surface. This phenomenon is often termed as secondary liquefaction and is associated with ejecta release at the ground surface. However testing by Sasaki et. al. (2004) observed during lab testing that seepage forces were relatively minor, being less than 5 % of the total uplift force ($F_B + F_{EPP}$).

The liquefied soil does not exhibit a hydrostatic pressure distribution initiating at the groundwater table, but is equivalent to the total stress pressure distribution for the soil. Permeability of the soil influences the rate of excess pore pressure dissipation. The FoS against buoyant uplift can be calculated through use of the following formula (Chian & Madabhushi, 2013).

$$FoS = \frac{F_B + F_{EPP}}{F_T + F_{WS} + F_{SP}}$$
 Equation 2

Refer to Figure 17 for a schematic visually summarising the failure mechanisms and force components under seismic conditions for liquefiable and non-liquefiable backfill. Infrastructure surrounded by liquefiable backfill exhibits reduced resistance soil shearing and the reduced area of the soil block directly above the infrastructure. Use of non-liquefiable backfill provides increased resistance to uplift due to increased shear resilience and wedges of non-liquefiable backfill.

Seismic buoyant uplift displacement

Typically a buried structure has an initial weight that is less than the weight of the native soil displaced; this leads to a lower total stress directly beneath the structure than adjacent native soil at an equivalent elevation. Excess pore pressure observed beneath the structure with the strong ground motion is lower than in the adjacent liquefied native soil. Koseki, et. al. (1997) observed during testing that the horizontal pressure gradient induces flow of liquefied sand towards and beneath the structure during uplift. Where gravel underlies the structure, the lateral pressure from the adjacent liquefied soil squeezes the gravel up to maintain contact with the underside of the structure.

Laboratory testing by Koseki, et. al. (1997) identified that uplift displacement was triggered when FoS reduced to about 0.7 to 0.95 during the period of shaking, and displacement continued until a FoS of close to 1 was achieved. This was supported by Sasaki et. al. (2004) who identified the uplift displacement rate was nearly constant during shaking, with the rate and magnitude of displacement being inversely proportional to the FoS. They observed movement almost stopped upon cessation of shaking, even if elevated pore pressure were maintained.

Liquefiable Backfill

Figure 17 Schematic of typical buoyant Uplift Mechanisms – Seismic, excess Pore Pressure Conditions

6.1.3 Liquefaction Induced Ground Settlement

The magnitude of liquefaction induced settlement is dependent on the severity of shaking, properties of soil (density, void ratio, cohesion, age etc.) and extent of liquefaction. Generally the volumetric strain is within a range of between 0 % - 5 % strain (Idriss & Boulanger, 2008).

6.1.4 Bearing Capacity

Generally the weight of a buried chamber is less than the weight of the native soil displaced, so under static conditions bearing failure is not anticipated unless the distribution of load on the foundation is eccentric.

Excess pore pressure generated by strong ground motion reduces net foundation loads; however the associated reduction of soil shear strength also reduces allowable bearing capacity. When the buoyant uplift force (F_B) exceeds the weight of the structure (F_T) and soil weight (F_{WS}), bearing failure is not anticipated. However, eccentric loading and differential settlement beneath the structure can result in localised elevated foundation pressure exceeding ultimate bearing capacity of the liquefied soil. Bearing failure will likely occur when the weight of the structure and soil exceeds the uplift force, leading to settlement of the structure.

6.2 Assessment of Performance of Buried Infrastructure

Learnings drawn from interpretation of the SCIRT and EQC Liquefaction Trial observations are presented and discussed in the following sections.

6.2.1 Liquefaction and Liquefaction Induced Settlement

The LiDAR DEM of ground settlement at the site inferred moderate to extensive liquefaction extended up to 5 m beyond the blast circles. Typical liquefaction induced settlements recorded were 120-180 mm within the northern blast circle; however the southern blast circle exhibited minor ground settlements of 0-80 mm even though liquefaction was inferred by the PPT and surface expressions of ejecta. The cause of the lesser settlement in the southern blast ring has not been fully explained. However, the presence of the silt lenses and ground improvement associated with the close proximity of the installed infrastructure at this end of the site may be contributing factors. It is possible that the explosive charges on the southern blast ring (compared with the northern ring) did not induce the same level of liquefaction at depth. This cannot be verified however liquefaction ejecta was expelled from the charge boreholes at the south west corner of the site suggesting the soil at depth did liquefy. This highlights the high variability of soils in Christchurch and the corresponding variability in settlement response.

Minor settlement of the ground surrounding chambers of <20 mm relative to the chamber base was observed, Table 5-1. This is in line with the typical observations of the ground settlement relative to chambers during the short shaking duration 22 February and 13 June 2011 earthquakes. Where pipe infrastructure interfaced with chambers, settlement of <20 mm relative to the base of the chamber was observed associated with settlement of 0.5 m to 1.5 m of soil, resulting in minor negative pipe grades at the connection.

Cohesive soils encountered within the upper 3 m of the soil profile and the synthetic ground motion of high intensity and short duration may influence the results of this trial. The observations of this trial are likely of lesser scale compared to those expected during a significant natural earthquake. Consideration of field observations and the inferred performance of buried infrastructure during earthquakes, laboratory testing and engineering judgement are required to interpret observations.

6.2.2 Chamber Performance

Typical earthquake damage to underground structures, such as during the 1995 Hyogoken-Nanbu earthquake, was the result of earthquake induced ground displacement such as lateral stretch, settlement and shaking inertial force; surprisingly damage associated with buoyant uplift was insignificant (Sasaki & Tamura, 2004). The same modes of damage were observed by the authors to be the main cause of damage to below ground infrastructure during the CES, similar observations were also made by Cubrinovski et al. (2014). Many manholes and pump stations were observed to protrude above the ground surface. Review of Christchurch manhole performance by Menefy & Scally (2013) identified that only 3.5 % to 5.5 % of their dataset exhibited relative displacements in excess of 150 mm. Where differential movement is minor, it is best explained by post liquefaction volumetric reconsolidation of the soil above foundation level. Cases of buoyant uplift were observed during the CES; however this was largely associated with large lightweight deep structures, often with eccentric loading or inconsistency in foundation arrangement across the structure. The duration of the 22 February 2011 earthquake was 10-14 seconds and the associated magnitude of buoyant uplift displacement for a typical manhole within liquefied backfill is of the order 25 - 250 mm when estimated by the method of Sasaki & Tamura (2004).

Uplift pressure

The excess pore pressure ratio with time measured beneath each of the chambers is presented in Figure 12. The magnitude of excess pore pressure observed in this trial supports theoretical assessment and laboratory testing by researchers, including Tobita et al. (2012), with excess pore pressure being equivalent to initial effective stress.

A liquefied state was maintained in the native soils immediately beneath the foundation of chambers (Test 4 and Test 7) for up to 5 minutes. A delayed increase in uplift pressure within the native soils from the migration of excess porewater from soil strata below towards the ground surface was 2 to 3 minutes following explosive detonation (secondary liquefaction) and inferred uplift pressure that would be similar or marginally higher than those generated by initial liquefaction of the adjacent soils. The excess pore pressure recorded was up to 2 % greater than the initial effective stress. The SCIRT field trial observations support the laboratory testing by Sasaki et al. (2004) which observed that seepage forces were relatively minor, being less than 5 % of the total uplift force ($F_B + F_{EPP}$). Consideration of elevated uplift associated with seepage, with uplift pressure equivalent to 105 % of total stress is recommended for design of buried infrastructure.

Influence of backfill type on uplift pressure

Liquefiable backfill

The pore pressure measured beneath the Test 4 chamber when liquefied was equivalent to the initial total stress. When the base of a chamber is founded within a liquefied layer the magnitude of the excess pore pressure within the native soil directly beneath a chamber is not affected by the extent of liquefied soils above.

Low strength concrete backfill

The uplift pressure within the liquefiable native sands directly beneath the Test 7 chamber was also equivalent to the initial total stress. The efficiency of this backfill is highly dependent on the as built dimensions and volumes accurately aligning with the design detail, in order to limit potential for bearing failure.

Permeable backfill

The high permeability of the backfill limited the uplift pressure beneath the chamber to a static water head at the ground surface. The pore pressure gradually reduced with time as excess pore pressure in the surrounding native soils reduced and water within the backfill was able to drain back into the adjacent soil.

Exhuming the Test 3 chamber found that the sewn geotextile bag was successful in preventing ingress of ejecta sands into the backfill, and the geotextile was free of any silt coating.

The resilience of a permeable backfill solution is dependent on providing an adequate drainage path to the ground surface, and a sewn geotextile bag with detailing to prevent ingress of ejecta at pipe penetrations and the ground surface.

Well graded granular backfill

The maximum r_u recorded for the PPT installed within the CCC AP65 was 0.18 and 0.29 for Tests 5 and 6 respectively, indicating the backfill did not liquefy. Excess pore pressure exerted on the chamber from liquefaction was less than 30 % of the excess pore pressure in the surrounding liquefied native soils. The external excess pore pressures within the native soils were attenuated within the well graded granular backfill. Trace infiltration of ejecta materials from soil strata below was observed during exhumation.

The assumption often made during design, that the uplift pressure within a granular backfill is equivalent to the excess pore pressure within the adjacent native soils, may be conservative. A further programme of testing is being developed in conjunction with the University of Canterbury through the Quake Centre to determine the validity of this observation from a single synthetic trial of short duration, and develop relationships for pressure attenuation with time. Caution in directly adopting the recorded observations of magnitude of pressure attenuation from Test 5 and 6 is recommended until the validity is confirmed.

Buoyant uplift potential

A theoretical assessment of the buoyant uplift potential for each chamber was performed considering the 'as built' condition and measured uplift pressure.

Table 7 summarises the theoretical FoS against buoyant uplift calculated in accordance with Equation 2 and the potential buoyant uplift mechanisms presented in Figure 17.

Analysis indicates that Test 4 and possibly Test 7 exhibited the potential for uplift. The extended base incorporated into chambers in Test 3, 4, 5, and 6 was effective in utilising the soil weight and shear strength of the overlying soil to resist uplift. Limiting the net vertical excess pore pressure applied to the chambers, though use of permeable backfill and well graded granular backfill (CCC AP65), was effective at increasing the FoS.

For Test 7 the unit weight of the concrete mass backfill was less than assumed during design, providing a reduced weight to resist uplift. However, the uplift pressures recorded beneath the chamber were approximately equivalent to the initial total stress prior to liquefaction. Test 7 supported theory which suggests that the benefits of adding impermeable mass to a structure (below ground) to resist buoyant uplift is limited once a FoS of 1 is achieved, as excess mass increases the total stress and with this the liquefaction uplift pressure.

Test ID	Chamber Type	Backfill Type	Liquefied Buoyant Uplift Factor of Safety		Uplift	Unlift
			Pre Trial Theoretical ⁽¹⁾	Observed Condition (2)	Anticipated	Observed
3	PE Pressure Sewer	Permeable backfill	3.0	2.4	No	No
4	PE Pressure Sewer	Native sands	0.6	0.9	Yes	No
5	1050mm dia concrete	CCC AP65	1.5	4.1	No	No
6	DN600 PE access	CCC AP65	2.0	5.1	No	No
7	PE Pressure Sewer	3MPa Concrete	1.2	1.0	Possible	No

Table 6-1	Anticipated	Chamber I	Unlift com	pared with	observed l	Jolift
	Anticipateu	Chamber v	opinit com		UDSELVEU (pint

(1) Assumes groundwater level at typical 0.5m depth below ground surface and designed dimensions.

(2) Assessed using as-built conditions and dimensions with measured pore pressure from PPTs.

Chamber uplift displacement

No observations of chamber uplift displacement above their original elevation were recorded during the Liquefaction Trial. The chamber displacement matched the inferred post liquefaction settlement of the underlying ground, within an error tolerance of less than +/-15 mm.

Laboratory testing by Koseki et al. (1997) observed that uplift displacement triggered when FoS reduced to between 0.7 to 0.95 during the period of shaking and continued until a FoS of close to 1 was achieved. This was supported by Sasaki & Tamura (2004) who identified the uplift displacement rate was nearly constant during shaking, with movement observed to almost stop upon cessation of shaking, even if elevated pore pressure was maintained. Negligible uplift for Test 4 and Test 7 observed during the SCIRT trial is considered to be the consequence of the short shaking duration where FoS for uplift was marginally below unity for less than five seconds. Theoretical uplift displacement was estimated for Test 4 and Test 7 by the method proposed by Sasaki & Tamarua (2004), indicating the potential displacement to be less than 90 mm (15 – 90 mm).

Often a buried structure has an initial weight that is less than the weight of the native soil displaced; this leads to a lower total stress directly beneath the structure than adjacent native soil at an equivalent elevation. Therefore excess pore pressure recorded beneath the structure is lower than in the adjacent liquefied native soil. Koseki, et al. (1997) observed during testing that the horizontal pressure gradient induces a flow of liquefied sand towards and beneath the structure during uplift. A minor flow of 5-10 mm of ejecta sand was observed beneath Test 4 and Test 7.

Sasaki & Tamura (2004) postulated that limited observation of buoyant uplift failures of underground structures may be due to current evaluation methods during design being conservative. The trial indicates that the SCIRT and CCC standard details adopted for the Christchurch Rebuild for minor below ground structures, comprising standard concrete manholes, and PE chambers, are expected to exhibit satisfactory resilience with respect to buoyant uplift.

Review of the trial data indicates that bearing capacity for the underlying liquefied ground was not exceeded. This is in line with theoretical assessment.

6.2.3 Pipeline Performance

Damage to buried pipelines during the CES was largely associated with structural failure of the pipe from dynamic loading, differential settlement, and extension and compression associated with lateral spread of the ground. The SCIRT and EQC trial allows field testing of seismic performance of the refined design details for flexible pipes.

Pipe dips

Differential settlements of 0 mm to greater than 150 mm were recorded across the site within pipes of Test 1, Test 2 and Test 8. This highlights the vulnerability of horizontal infrastructure to variable and differential settlement. Competent pipe haunching and well graded granular backfill within the trench provided negligible mitigation in the magnitude or rate of differential settlement.

Composite action between the pipe and the trench backfilled with well compacted granular materials has limited influence on reducing the rate of total settlements. This is in line with observations during the CES, with the most common pipe defect for modern PVC-U pipe installations being pipe dips. Design of future pipeline infrastructure should consider this residual vulnerability to differential settlements. Selection of system type and appropriate detailing of installed pipe grades and alignments could provide a small reduction in vulnerably. In most instances piling and/or ground improvement are not economically feasible and generally such measures focus or shift the location of the differential settlement, offering limited or little additional resilience.

Structural performance

Pipe materials historically used in Christchurch exhibited poor performance during the CES (earthenware, asbestos cement, cast iron and reinforced concrete). The dominant pipe material type selected and incorporated into the rebuild was PVC-U pipe, which provides superior seismic resilience and improvement in constructability. Pipelines constructed by trenching methods incorporated spigot and socket pipe with rubber seal, while the horizontal directionally drilled pipeline in the trial utilised an alternative Restrain[™] threaded socket and spigot pipe.

Well-constructed below ground horizontal infrastructure generally exhibited good structural performance during the Liquefaction Trial. With the exception of the directionally drilled pipe (Test 8) no structural failure of the pipes were observed. The ground motion acceleration experienced during the trial was significantly higher frequency and amplitude than would be experienced during a natural earthquake. However, the magnitude of vertical and horizontal ground deformation in the order of <10 mm is significantly less than a natural earthquake. Dynamic ground displacements in Christchurch during the CES were in order of 100-150 mm for the 22 February 2011 earthquake and 200-300 mm for the 4 September 2010 event. The trial infers that the PVC-U pipeline structural performance will likely be satisfactory during an earthquake though some localised failures associated with large strain compression/tension are possible.

One threaded socket and spigot joint on the directionally drilled restrain pipe failed during the trial explosive detonation (Test 8). The close proximity of the explosive charge (~2 m separation) and the locally reduced effective pipe wall thickness at the threaded joint are likely contributing factors to the joint failure.

A stiff SN16 pipe was used during the Liquefaction Trial and exhibited good resistance to ovaility deformation both under construction, static and post dynamic conditions during the trial. Pipe ovality during the strong ground motion was not recorded, and was likely greater than recorded, however no visible evidence of pipe damage or structural fatigue was observed.

Pipe dips induced along the pipes were not sufficiently abrupt to exceed the maximum bend radius specified by the pipe manufacturer, or to induce structural damage.

All pipe connections to the manholes and pressure sewer chambers exhibited adequate performance and no pipe damage to chambers or connector. However, differential movements were relatively small.

Haunching and backfill performance

The CCC specified haunching material for flexible pipes comprised NZTA M4 AP20 which is a well graded crushed gravel hardfill. Placement of well graded gravel in wet or saturated conditions, frequently encountered in Christchurch, can reduce pipe laying productivities. At the time of the trial SCIRT was considering alternative haunching materials with lower fines content. Trial testing incorporates a range of extreme haunching materials including: NZTA M6 Grade 2 chip, 8-10 mm pea gravel, and 10/14 chip. No appreciable difference in seismic performance between the haunching materials was observed during the trial. Ejecta dykes from beneath the trenches intersected the base of the haunching and migrated vertically, locally filling the void space between aggregate particles with fine sand. This does not adversely affect future performance of the pipe haunching. Observations for the CCC AP65 backfill were in line with the haunching.

Migration of adjacent potentially liquefied soils laterally into the trench haunching and backfill was not observed. This observation does not provide conclusive evidence that this is not anticipated because the silty nature and cohesive soil layers encountered at the trial site limited liquefaction and mobility of the soil, and the observation that majority of the liquefaction occurred below 3 m. The evidence of the ejecta materials from below the trench migrating into the trench indicates that sands with low fines content could potentially migrate into a trench haunching or backfill having a high void content.

The annulus of the horizontally directionally drilled pipe (Test 8) filled with drilling mud did not exhibit any adverse or significant deformation. The cohesive native soil surrounding the pipeline in the areas exhumed likely did not liquefy.

7 Earthquake Rebuild Infrastructure Resilience

Observations from the trial have been compared against theory, design assumptions, and observations of damage and performance of buried infrastructure during the CES. Though the trial is not directly representative of all ground conditions found in Christchurch and natural earthquake characteristics, it provides an effective means to assess the effects of liquefaction and settlement on buried infrastructure in a controlled manner.

Greater extents of liquefaction, a longer duration of shaking, lateral spreading and persistent elevated pore pressure due to aftershocks is expected in a natural earthquake sequence. During a significant natural earthquake sequence a portion of Christchurch's buried infrastructure will be exposed to more severe conditions than experienced in the SCIRT and EQC Trial.

The SCIRT and EQC trial observations indicate that the CCC and SCIRT design details adopted in the Christchurch rebuild are a pragmatic, practical solution exhibiting an appropriate level of resilience and optimised value.

The standard details are appropriate for the majority of conditions in Christchurch, however exceptions will occur. During a significant earthquake, damage to Christchurch's buried infrastructure will occur, requiring repair or replacement. This is due to the infrastructure designs not mitigating or eliminating liquefaction potential or the consequential lateral spreading, differential settlement, buoyant uplift, and dynamic soil structure interaction. However, the anticipated extent, severity and influence on post disaster functionality will be somewhat improved from what was observed during the earthquakes of 2010/2011. Structural damage to pipes will be reduced due to use of materials exhibiting improved seismic durability and flexibility. The potential and frequency of chamber buoyant uplift will be significantly reduced. However, the influence of lateral spread and differential settlement on pipelines will remain resulting in damage associated with pipe extension/ dislocation and pipe dips, respectively. The impact of differential settlement to gravity pipes can be reduced through steepening minimum design grades, incorporating additional pump stations, or adopting alternative technologies such as pressure sewer or vacuum sewer.

The resilient design improvements will provide a positive benefit in post disaster functionality and assist with enabling a more controlled and programmed rebuild.

8 **Recommendations and Conclusions**

The SCIRT and EQC Liquefaction Trial provided a controlled field assessment of the performance of below ground chambers and pipes in liquefied soils. Interpretation of the trials observations and data supports geotechnical design theory, anticipated relative performance and modes of failure. The performance of the buried infrastructure in the trial is in line with the examples of existing infrastructure that generally provided good observed performance in Christchurch during the CES. The trial findings support the resilient design solutions incorporated into the SCIRT rebuild of horizontal infrastructure to address examples where performance during the CES was not good, e.g. brittle pipes including those made of earthenware and asbestos cement.

Key recommendations for design are listed below:

- Variability in soil type and liquefaction potential over short distances can lead to significant differential settlement. Therefore designers and asset owners should consider residual differential settlement risk and its influence on asset functionality during project scoping and design. PVC-U pipelines exhibited pipe dips as the dominant mode of damage during the CES. This shows that a well-constructed trench, backfilled with well compacted granular materials, will support the pipe but has little influence on differential settlement.
- Use of native soils for backfill is not recommended unless stabilised or adequate compaction can be provided and demonstrated to mitigate liquefaction triggering.
- Designers should focus on simple designs and detailing for buried infrastructure and their backfill to provide improved resilience through lower sensitivity to construction tolerance and/or quality, and future maintenance. The harder it is to construct the more likely it will be constructed incorrectly, potentially affecting the performance during an earthquake.
- An extended chamber base is an effective method for limiting potential for buoyant uplift that utilises the effective weight of backfill materials to resist the buoyant forces. This design allows flexibility in backfill type, provides access for future maintenance, and is a cost effective solution of high value.
- Relieving excess pore pressure by drainage with highly permeable backfill within a sewn geotextile bag is effective at limiting uplift pressure. Resilience of this method is dependent on preventing migration of fines into the backfill.
- The low excess pore pressure observed within the well graded granular backfill (CCC AP65) beneath the chambers during the trial, suggests that the level of resilience provided by the backfill is likely to be higher than often assumed in design. Further laboratory testing is required before a reliable conclusion could be drawn. The well graded granular backfill is a pragmatic solution.
- Adding mass to a structure is a feasible solution to mitigate buoyant uplift however the effectiveness reduces if adding mass results in an increased impermeable volume below ground.

9 References

Brown, I. J. & Weeber, J. H. (1992) "Geology of the Christchurch Urban Area, Geological Map 1" Institute of Geological & Nuclear Sciences Ltd, 1992

Chian, S.C., & Madabhushi, S.P.G. (2013). Remediation against floatation of underground structures. Proceedings of the ICE -Ground Improvement Vol. 166, No. 3, p155-167.

Chian, S.C, Tokimatsu, K., & Madabhushi, S.P.G. (2014). Soil Liquefaction–Induced Uplift of Underground Structures: Physical and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 10.

Christchurch City Council. (2014). Christchurch City Council Construction Standard Specification (CSS), 30 April 2014.

Christchurch City Council. (2013). Infrastructure Design Standard (IDS), January 2013.

Cubrinovski, M., Hughes, M., Bradley, B.A., Noonan, J., Hopkins, R., McNeill, S., & English, G. (2014) Performance of horizontal infrastructure in Christchurch city through the 2010-2011 Canterbury earthquake sequence. University of Canterbury Research Report 2014-02. 139pp

Cubrinovski, M., Hughes, M., Bradley, McCahon, I. McDonald, Y. Simpson, H. Cameron, R. Christison, M. Henderson, B. Orense, R. O'Rourke, T. (2011) Liquefaction Impacts on Pipe Networks, University of Canterbury Research Report 2011-04, Dec 2011. 149pp

Cubrinovski, M., Taylor, M., Henderson, D., Winkley, A., Haskell, J., Bradley, B.A., Hughes, M., Wotherspoon, L., Bray, J. and O'Rourke, T. (2014) Key factors in the liquefaction-induced damage to buildings and infrastructure in Christchurch: Preliminary findings. Auckland, New Zealand: 2014 New Zealand Society for Earthquake Engineering Annual Conference (NZSEE), 21-23 Mar 2014. 9pp

Gibson, M.F.L, & Rowland, D.A. (2015). SCIRT and EQC Liquefaction Trial – the Performance of Buried Infrastructure in Liquefied Soils. 12th Australia New Zealand Conference on Geomechanics (ANZ2015), Wellington, New Zealand

Idriss, I. M., and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, 261 pp

Kang, G., Tobita, T., Iai, S., & Ge, L. (2013). Centrifuge Modeling and Mitigation of Manhole Uplift due to Liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 3, p458-469

Koseki, J., Matsuo, O., & Koga, Y. (1997). Uplift behaviour of underground structures caused by liquefaction of surrounding soil during earthquake. Soils and Foundations, Japanese Geotechnical Society, Vol. 37, No. 1 p97-108.

Menefy, B., & Scally, D. (2013). Analysis and Design of Manholes in Liquefiable Soils. Christchurch: University of Canterbury.

New Zealand Geotechnical Society Inc (NZGS), Geotechnical earthquake engineering practice: Module 1 – Guideline for the identification, assessment and mitigation of liquefaction hazards, July 2010.

Sasaki, T., & Tamura, K. (2004). Prediction of Liquefaction-Induced Uplift displacement of Underground Structure. 36th joint meeting US-Japan Panel on Wind and Seismic Effects p191-198.

Stokoe, K.H., Roberts, J. N., Hwang, S., Cox, B., Menq, F.Y., Van Ballegooy, S. Effectiveness of inhibiting liquefaction triggering by shallow ground improvement methods: Initial field shaking trials with T-Rex at one site in Christchurch, New Zealand. Soil Liquefaction during Recent Large-Scale Earthquakes – Orense, Towtata & Chouw (eds)Taylor & Francis Group, London, 2014.

Thomas D. O'Rourke, Sang-Soo Jeon, Selcuk Toprak, Misko Cubrinovski, Matthew Hughes, Sjoerd van Ballegooy, and Dimitra Bouziou (2014) Earthquake Response of Underground Pipeline Networks in Christchurch, NZ. Earthquake Spectra: February 2014, Vol. 30, No. 1, pp. 183-204.

Tobita, T., Kang, G., & Iai, S. (2012). Estimation of liquefaction-induced manhole uplift displacements and trench-backfill sediments. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 4, p491-499

Appendix A Photographic Records

Photo 1: General site photo
Photo 2: General site photo
Photo 3: General site photo
Photo 4: General site photo
Photo 5: Test 1 – General photos
Photo 6: Test 1 – Easily compactible haunching
Photo 7: Test 2 – Trench wall soil profile
Photo 8: Test 2 – NZTA M/4 AP20 haunching and CCC AP65 backfill
Photo 9: Test 3 – Installing PPT within uniformly graded backfill beneath pressure chamber 7
Photo 10: Test 3 – Installing chamber
Photo 11: Test 3 – Backfilled chamber prior to folding geotextile over the backfill and placing topsoil
Photo 12: Test 4 – General photos
Photo 13: Test 4 – Installation of chamber
Photo 14: Test 5 – Excavation and ground conditions
Photo 15: Test 5 – Preparing foundation for chamber
Photo 16: Test 6 – Preparation beneath chamber
Photo 17: Test 6 – Installation of chamber
Photo 18: Test 7 – Pressure sewer chamber prior to installation
Photo 19: Test 7 – Low strength concrete backfill
Photo 20: Test 8 – Installation of directionally drilled pipeline within a hole reamed to 250 mm diameter
Photo 21: Test 8 – Iplex Restrain [™] pipe joints, and pipe connector for drawing pipe though reamed hole
Photo 22: Instrumentation – PPT installed within native soil to assess liquefaction triggering. 13
Photo 23: Instrumentation – Vertical settlement profilers
Photo 24: Explosive charge installation – General site 23 October 2013
Photo 25: Explosive charge installation – Blast holes, stemming, explosive charges and detonation control
Photo 26: Liquefaction triggering – Immediately liquefaction triggering
Photo 27: Liquefaction triggering – Immediately liquefaction triggering
Photo 28: Liquefaction triggering – Immediately liquefaction triggering
Photo 29: Liquefaction triggering – Immediately liquefaction triggering
Photo 30: Liquefaction Triggering – Test 3, 4 & 5
Photo 31: Liquefaction Triggering – Visible land damage
Photo 32: Test 1 - General photos
Photo 33: Exhuming Test 1 – Exposing CCC AP65 Backfill and NZTA M6 Grade 2 roading chip haunching
Photo 34: Exhuming Test 1 – Exposing CCC AP65 Backfill and NZTA M6 Grade 2 roading chip haunching

Photo 35: Exhuming Test 2 – Excavating and exposing DN15 SN16 PVC-U pipe within NZTA M4 AP20
Photo 36: Exhuming Test 2 – Exposing interface between NZTA M/4 AP20 haunching and native soil
Photo 37: Exhuming Test 2 – Migration of ejecta material into haunching
Photo 38: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill
Photo 39: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill 24
Photo 40: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill 25
Photo 41: Exhuming Test 4 – General exhuming phodtos
Photo 42: Exhuming Test 4 – Exposing ejecta and PPT beneath chamber
Photo 43: Exhuming Test 4 – Exhuming 14/10 chip haunching around Test 4 lateral
Photo 44: Exhuming Test 5 – General photos of excavation and ground conditions
Photo 45: Exhuming Test 5 – General photos and close up of AP65 backfill
Photo 46: Exhuming Test 5 – Exposing soil beneath chamber and PPT
Photo 47: Exhuming Test 6 – General photos of exhuming backfill around Smartstream 600 Mini Manhole
Photo 48: Exhuming Test 6 – AP65 backfill chamber interface, and PPT beneath chamber 33
Photo 49: Exhuming Test 7 – Excavation and ground conditions
Photo 50: Exhuming Test 7 – exposing low strength concrete backfill
Photo 51: Exhuming Test 7 – Exposing soil beneath chamber and PPT
Photo 52: Exhuming Test 7 – Exposing lateral; with pea gravel haunching
Photo 53: Exhuming Test 8 – Exposed section of undamaged directionally drilled pipe
Photo 54: Exhuming Test 8 – Exposing damaged section of pipe, possible additional damage induced by excavator
Photo 55: Exhuming – Paleoliquefaction observations

General Construction

Photo 1: General site photo

Photo 2: General site photo

General Construction (continued)

Photo 3: General site photo

Photo 4: General site photo

Construction Test 1: Pipe with easily compacted granular haunching

Photo 5: Test 1 – General photos

Photo 6: Test 1 – Easily compactible haunching

Construction Test 2: Pipe with well graded granular haunching

Photo 7: Test 2 - Trench wall soil profile

Photo 8: Test 2 – NZTA M/4 AP20 haunching and CCC AP65 backfill

Construction Test 3: Pressure Sewer Chamber, reliving porewater pressure

Photo 9: Test 3 – Installing PPT within uniformly graded backfill beneath pressure chamber

Photo 10: Test 3 – Installing chamber

Photo 11: Test 3 – Backfilled chamber prior to folding geotextile over the backfill and placing topsoil

Construction Test 4: Pressure Sewer Chamber, native sand backfill

- [A] General site.
- **[B]** Installation of PPT.
- **[C]** CCC AP65 Backfill and 14/10 chip haunching for connecting lateral.

Photo 12: Test 4 – General photos

- [D] Preparation of foundation soils.
- [E] Installation of pressure sever chamber prior to backfill.

Photo 13: Test 4 – Installation of chamber

Construction Test 5: Standard concrete manhole chamber with AP65 backfill

Photo 14: Test 5 – Excavation and ground conditions

- [A] PPT installed within CCC AP65.
- **[B]** AP65 foundation prior to installing chamber.

Photo 15: Test 5 – Preparing foundation for chamber

Construction Test 6: PE manhole chamber with AP65 backfill

- [A] Installing PPT within CCC AP65.
- [B] AP65 foundation prior to installing chamber.

Photo 16: Test 6 – Preparation beneath chamber

- [A] Smartstream 600 Mini Manhole
- [B] Installation of chamber.

Photo 17: Test 6 – Installation of chamber

Construction Test 7: Pressure Sewer Chamber, low strength concrete backfill

Photo 18: Test 7 – Pressure sewer chamber prior to installation

Photo 19: Test 7 - Low strength concrete backfill

Construction Test 8: Directionally Drilled Pipeline

Photo 20: Test 8 - Installation of directionally drilled pipeline within a hole reamed to 250 mm diameter

Photo 21: Test 8 – Iplex Restrain[™] pipe joints, and pipe connector for drawing pipe though reamed hole

Instrumentation

Photo 22: Instrumentation – PPT installed within native soil to assess liquefaction triggering

Photo 23: Instrumentation – Vertical settlement profilers

Explosive charge installation

Photo 24: Explosive charge installation – General site 23 October 2013

Photo 25: Explosive charge installation – Blast holes, stemming, explosive charges and detonation control

Liquefaction Triggering – 24 October 2013

Photo 26: Liquefaction triggering – Immediately liquefaction triggering

Photo 27: Liquefaction triggering – Immediately liquefaction triggering

Liquefaction Triggering – 24 October 2013 (continued)

Photo 28: Liquefaction triggering – Immediately liquefaction triggering

Photo 29: Liquefaction triggering – Immediately liquefaction triggering

Liquefaction Triggering – 24 October 2013 (continued)

[A] Test 4.[B] Test 3.[B] Test 5.

Photo 30: Liquefaction Triggering – Test 3, 4 & 5

- [D] Ground cracking from blast heave.
- [E] Liquefaction ejecta from charge borehole.

Photo 31: Liquefaction Triggering – Visible land damage

Exhuming Test 1: Pipe with easily compacted granular haunching

Photo 33: Exhuming Test 1 – Exposing CCC AP65 Backfill and NZTA M6 Grade 2 roading chip haunching

Exhuming Test 1: Pipe with easily compacted granular haunching

Photo 34: Exhuming Test 1 – Exposing CCC AP65 Backfill and NZTA M6 Grade 2 roading chip haunching

Exhuming Test 2: Pipe with well graded granular haunching

Photo 35: Exhuming Test 2 – Excavating and exposing DN15 SN16 PVC-U pipe within NZTA M4 AP20

Exhuming Test 2: Pipe with well graded granular haunching

- [A] Slowly exposing the side interface between AP20 haunching and native soil.
- **[B]** No migration of soil from side wall into haunching.
- **[C]** Native soil from immediately beneath the trench did not migrate into haunching.

Photo 36: Exhuming Test 2 – Exposing interface between NZTA M/4 AP20 haunching and native soil

Exhuming Test 2: Pipe with well graded granular haunching

- [D] Clean interface between base of trench and native ground, no deformation.
- **[E]** Localised vertical ejecta dykes intersected haunching, fine sand from depth.
- [F] Ingress of ejecta material into well graded NZTA M4 AP20 haunching.

Photo 37: Exhuming Test 2 – Migration of ejecta material into haunching

Exhuming Test 3: Pressure Sewer Chamber, reliving porewater pressure

- [A] Commencing exhuming Test 3.
- **[B]** Opening sewn geotextile bag to expose permeable Grade 2 chip backfill material.
- **[C]** Inclusion of sand within backfill considered to be inclusion of material during construction not ingress of ejecta sand.
- **[D]** ~7mm of settlement of fill materials above permeable backfill relative to chamber.

Photo 38: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill

Exhuming Test 3: Pressure Sewer Chamber, reliving porewater pressure

- **[E]** Pealing geotextile away from native soil. Fine layer of sand observed at the soil/ geotextile interface. No evidence to suggest that geotextile has been clogged with fines.
- [F] Observed ejecta dyke (fine sand) outside geotextile bag at interface with native soil.
- **[G]** Piecewise deconstruction of Test 3.
- [H] Clean uniformly graded backfill, exposed lateral pipe. No observed ingress of ejecta materials.

Photo 39: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill

Exhuming Test 3: Pressure Sewer Chamber, reliving porewater pressure

- [I] Excavation extent when exhuming infrastructure.
- [J] Unwrapping PPT.
- **[K]** Exposing PPT within permeable backfill beneath presser sewer chamber.

Photo 40: Exhuming Test 3 – Exhuming Test 3 chamber with permeable backfill

Exhuming Test 4: Pressure Sewer Chamber, native sand backfill

Photo 41: Exhuming Test 4 – General exhuming photos.

Exhuming Test 4: Pressure Sewer Chamber, native sand backfill

- [F] Underside of chamber upon removal of Pressure Sewer chamber.
- **[G]** Accumulation of fine sand (ejecta) beneath the base of the chamber 10-15mm.
- **[H]** Exposing PPT form beneath chamber.
- [I] Connecting lateral to chamber.

Photo 42: Exhuming Test 4 – Exposing ejecta and PPT beneath chamber

Exhuming Test 4: Pressure Sewer Chamber, native sand backfill

Photo 43: Exhuming Test 4 – Exhuming 14/10 chip haunching around Test 4 lateral.

Exhuming Test 5: Standard concrete manhole chamber with AP65 backfill

Photo 44: Exhuming Test 5 – General photos of excavation and ground conditions

Exhuming Test 5: Standard concrete manhole chamber with AP65 backfill

- [A] General photos of exhumed standard concrete manhole.
- [B] Long socket manhole connector
- [C] Settlement of backfill material relative to manhole lid.
- [D] Minor ingress of liquefaction ejecta sand into AP65 backfill.

Photo 45: Exhuming Test 5 – General photos and close up of AP65 backfill

Exhuming Test 5: Standard concrete manhole chamber with AP65 backfill

- [E] Backfill beneath chamber upon removal.
- **[F]** Exhumed PPT in good condition.

Photo 46: Exhuming Test 5 – Exposing soil beneath chamber and PPT

Exhuming Test 6: PE manhole chamber with AP65 backfill

Photo 47: Exhuming Test 6 – General photos of exhuming backfill around Smartstream 600 Mini Manhole

Exhuming Test 6: PE manhole chamber with AP65 backfill

Photo 48: Exhuming Test 6 – AP65 backfill chamber interface, and PPT beneath chamber

[A], [B] & [C] Exposing the top surface of 3MPa concrete backfill and surrounding soil conditions.

[D] Excavation beneath low strength concrete.

Photo 49: Exhuming Test 7 – Excavation and ground conditions

- [E] Cohesive nature of soils.
- [F] Concrete cores taken for lab measurement of density.
- [G] PVC-U sleeve though concrete backfill.
- **[H]** Sealing lateral to prevent ingress of concrete backfill at chamber end.
- [I] Deconstructing low strength concrete backfill.

Photo 50: Exhuming Test 7 – exposing low strength concrete backfill

Photo 51: Exhuming Test 7 – Exposing soil beneath chamber and PPT

[M], [N], [O], & [P]

Ingress of vertical liquefaction ejecta pipe into pea gravel haunching, depositing sand and a ring of silt.

[Q] No ingress of native soil into haunching material.

Photo 52: Exhuming Test 7 – Exposing lateral; with pea gravel haunching

Exhuming Test 8: Directionally drilled pipeline

Photo 53: Exhuming Test 8 – Exposed section of undamaged directionally drilled pipe

Exhuming Test 8: Directionally drilled pipeline

Photo 54: Exhuming Test 8 – Exposing damaged section of pipe, possible additional damage induced by excavator

Exhuming: Observations of paleoliquefaction

[A] Thin (<10mm) vertical seams filled with light blue grey sandy Silt.[B], [C], [D] Yellow grey fine to medium Sand within defects formed by lateral spread.

Photo 55: Exhuming – Paleoliquefaction observations

B

Appendix B Geotechnical Investigation Data

Geotechnical Investigation Location Plan

Figure B1 – Location of Trial Geotechnical Investigations

Geotechnical investigation data can be sourced in electronic format form the Canterbury Geotechnical Database, <u>https://canterburygeotechnicaldatabase.projectorbit.com</u>.

TONKIN & TAYLOR LTD

BOREHOLE LOG

BH No: AVD-TCR01-BH07 Hole Location: 27 Ardossan Street SHEET 1 OF 3

PROJECT: Ground	l Im	pro	vem	nent	t Tr	ials			LOC		N: Site	Four				JOB No: 52020.022
CO-ORDINATES:	5: 5745060.09 mN DRILL TYPE: Fraste Multidrill - XL								HOLE STARTED: 30/8/13							
	248	484666.18 mE DRIL						LL ME	ЕТНО	D: So	nic			HOLE FINISHED: 30/8/13		
R.L.:	1.6	5 m мс	і См	ISI	(C	DRILLED BY: Prodrill - Kane DRILLED BY: Drill ProMater LOCCED BY: JYM CHECKED: BM										
GEOLOGICAL	INZ	ivic	J, IVI	1.5L	(CC	C 20/01/12 Datam ->	.0+5			.010.	Dimit	10/11/		ENGI	NEER	RING DESCRIPTION
GEOLOGICAL UNIT,											NG		Ŧ		ŋ	SOIL DESCRIPTION
GENERIC NAME, ORIGIN,			(%)							YMBO	THER	≻	RENG	GTH (GTH	PACIN	Soil type, minor components, plasticity or particle size, colour.
MINERAL COMPOSITION.			/ERY (TESTS			0	ION S	WEA	ENSIT	AR STI (kPa	MPRE (MP.	ECT S	ROCK DESCRIPTION
	OSS		RECO/				S	Ê	IC LOG	FICAT	ION	3TH/D FICAT	SHE/	000	DEFI	Substance: Rock type, particle size, colour, minor components.
		VATER	COREF	VETHO	CASING		SAMPLE	R.L. (m) DEPTH	GRAPH	CLASSI		STREN	55285	0 2880	8800 89988	Defects: Type, inclination, thickness, roughness, filling.
Fill		>		2			0,		<u>x1 1/2</u>	ML	W	0,0				TOPSOIL - SILT with some organics and trace
								-1.5 -	// <u>//</u> ×							dilatancy. Organics are fibrous. Sand is fine.
									××							Sandy SILT with some sandy pockets/lenses and
									×							trace gravel and organics, brownish grey, very
						≭ FC@0.6m			* * *	SM						medium, subrounded. Organics are fibrous.
			8	nic		= 24.2%		-1.0 -	x o X o							Fine SAND with some silt and gravel, brownish grey. Gravel is fine to coarse, subrounded.
Previous Topsoil Surface			-	So					× ×	ML						SILT with minor gravel, organics and thin sand
Yaldhurst Member									××	SM						Gravel is fine to medium, subrounded. Organics
Formation						* FC@1.1m			×	MH	M					are amorphous.
						* = 64.9%		-0.5 -	– × ×	Null 1	141					grey. Gravel is fine to medium, subrounded.
						limits @1.1m			×	10						- 2.0m: grades to trace wood flecks.
								- 1.5-	×	NIL	<u> </u>					SILT with minor clay and trace ceramic pipe
									^ ×		Sat					non-dilatant. Gravel is medium to coarse,
Christchurch Formation]								××	SM	W					subrounded. - 1.35m: 20mm Organic SILT lens, dark grey.
ronnation									××							- 1.37m: grades to sandy with clay, ceramic pipe
						≭ FC@2m		2.0-	×							SILT with minor sand and trace gravel, grey, 2.
						= 50.8%			×							low plasticity, quick dilatancy. Sand is fine. Gravel is medium to coarse, subrounded
			00	onic					××	ML	-					Silty fine SAND, grey.
				Š					×	SM	-					- 1.85m: 20mm SILT lens. - 1.9m: grades to some silt.
								2.5-	××							SILT with trace sand and organics, grey, low
								-10 -	×	ML						are amorphous and fibrous.
									× ×	SM						Silty fine SAND with some thin silt lenses and
									×	5141						- 2.4m: grades to some silt. Thin silt lenses and
			_		-	∗ _{FC@3m}		- 3.0-	×	SP	-					SILT with minor thin sand lenses and trace 3.
						= 6.2%		-1.5 -		5.						organics, grey, low to moderate plasticity, very slow dilatancy. Sand is fine. Organics are
									·×.							fibrous.
									×							Fine SAND with some silt, grey. - 2.95m: 10mm SILT lens.
								3.5-	×							- 3.0m: grades to minor silt. Sand is fine to 3.
									×							- 3.5m: grades to trace gravel. Gravel is fine to
			100	onic					×							medium, subrounded.
									× × ×							- 3.8m: grades to minor gravel.
						≭ _{FC@4m}		4.0	x x							- 4.0m: grades to trace gravel.
						= 6.7%										- 4.1m: grades to gravel absent. Sand is fine.
								= =								
								= =	×							
			\vdash	-	-			4.5	×,							- 4.5m: Sand becomes fine to medium, 4.
							×							predominantly fine.		
								= =	×							
									× ,							subrounded.
			100	Sonic		<pre>*FC@3m = 6.2%</pre> * FC@4m = 6.7%		-1.0 3.0 -1.5 -2.0 4.0 -2.5 -2.5 -3.0	x x <td>ML SM SP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> are amorphous and fibrous. Silty fine SAND with some thin silt lenses trace wood flecks, grey. - 2.4m: grades to some silt. Thin silt lense wood fragments absent. SILT with minor thin sand lenses and trace organics, grey, low to moderate plasticity, slow dilatancy. Sand is fine. Organics are fibrous. Fine SAND with some silt, grey. - 2.95m: 10mm SILT lens. - 3.0m: grades to minor silt. Sand is fine to medium, predominantly fine. - 3.5m: grades to minor gravel. - 4.0m: grades to trace gravel. - 4.1m: grades to gravel absent. Sand is fine - 4.5m: Sand becomes fine to medium, predominantly fine. - 4.5m: grades to trace gravel. Gravel is fine </td>	ML SM SP						 are amorphous and fibrous. Silty fine SAND with some thin silt lenses trace wood flecks, grey. - 2.4m: grades to some silt. Thin silt lense wood fragments absent. SILT with minor thin sand lenses and trace organics, grey, low to moderate plasticity, slow dilatancy. Sand is fine. Organics are fibrous. Fine SAND with some silt, grey. - 2.95m: 10mm SILT lens. - 3.0m: grades to minor silt. Sand is fine to medium, predominantly fine. - 3.5m: grades to minor gravel. - 4.0m: grades to trace gravel. - 4.1m: grades to gravel absent. Sand is fine - 4.5m: Sand becomes fine to medium, predominantly fine. - 4.5m: grades to trace gravel. Gravel is fine

Log Scale 1:25

BORELOG-TC3 2013-09-10.JXXM.GROUNDIMPROVEMENTBOREHOLES.GPJ 17-Sep-2013

TONKIN & TAYLOR LTD BOREHOLE LOG

BH No: AVD-TCR01-BH07 Hole Location: 27 Ardossan Street

SHEET 2 OF 3

PROJECT: Ground	d Im	pro	ven	nent	t Tr	ials			LOC	ATIO	N: Site	Four				JOB No: 52020.022	
CO-ORDINATES:	 5745060.09 mN 2484666.18 mE 						rill -	XL	HOLE STARTED: 30/8/13								
DI ·	2484666.18 ME						DRILL METHOD: Sonic								HOLE FINISHED: 30/8/13		
	NZMG_MSL (CCC 20/01/12 Datum -					CC 20/01/12 Datum -9	-9.043m) DRILL FLUID: Drill Pro/Water						ter		LOGGED BY: JXXM CHECKED: BMcD		
GEOLOGICAL			,					/						ENGI	NEEF	RING DESCRIPTION	
GEOLOGICAL UNIT, GENERIC NAME, ORIGIN, MINERAL COMPOSITION.	FLUID LOSS	WATER	CORE RECOVERY (%)	METHOD	CASING	TESTS	SAMPLES	т R.L. (m) DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	26 SHEAR STRENGTH	COMPRESSIVE COMPRESSIVE STRENGTH (MPa)	200 DEFECT SPACING 2000 (mm)	SOIL DESCRIPTION Soil type, minor components, plasticity or particle size, colour. ROCK DESCRIPTION Substance: Rock type, particle size, colour, minor components. Defects: Type, inclination, thickness, roughness, filing.	
Christchurch Formation		-				$*_{FC@5m} = 10.9\%$			×	SP	W					Fine to medium, predominantly fine SAND with minor silt and trace gravel, grey. Gravel is fine,	
			100	Sonic		10.970			× × * 8 • ×	SM						subrounded. - 5.2m: grades to some silt and minor gravel. Gravel is fine to medium.	
								-4.0	× ~ × ~ × ×							5.5- - 5.55m: grades to gravel absent. Sand is fine.	
					_	★ FC@6m = 4.1%		-4.5	× × × × × × × × × ×							- 6.0m: grades to trace carbonaceous wood 6.0 ^o flecks.	
			100	Sonic		★ FC@7m = 4.5%		-5.0 -5.0 -5.5 -7.5		SP SW SP						 6.5¹ - 6.85m: grades to minor silt. Sand is fine to medium, predominantly fine. - 7.05m: grades to trace gravel. Sand is fine to coarse, predominantly fine to medium. Gravel is fine, subrounded. - 7.2m: sand grades to fine to medium. 	
			93	Sonic		* FC@8m = 6.7%		-6.5	× , × × × × × × × × × ×	SM						- 7.8m: grades to some silt with gravel absent. 8.0	
								- 8.5	× × ×	SP						 - 8.45m: grades to minor silt and trace gravel. 8.5 Gravel is fine. - 8.6m: grades to gravel absent. 	
						★ FC@9.1m = 12.1%		9.0	×	SP						No Recovery: 8.9 - 9.0m. 9.0	
				3				9.5	× × × ×	SM						- 9.45m: grades to some silt. Sand is fine. 9.5	
			53	Sonic		* FC@9.8m = 3.6%			×							No Recovery: 9.8 - 10.0m	

Log Scale 1:25

BORELOG-TC3 2013-09-10.JXXM.GROUNDIMPROVEMENTBOREHOLES.GPJ 17-Sep-2013

TONKIN & TAYLOR LTD

BOREHOLE LOG

BH No: AVD-TCR01-BH07 Hole Location: 27 Ardossan Street

SHEET 3 OF 3

PROJECT: Ground	nd Improvement Trials					LOCATION: Site Four										IOB No: 52020 022		
	5745060.09 mN					1		DRILL TYPE: Fraste Multidrill - YI									HOLE STARTED: 30/8/13	
	2484666.18 mE															HOLE FINISHED: 30/8/13		
R.L.:	1.65 m DRILL METHOD: Sonic								DRILLED BY: Prodrill - Kane									
DATUM:	NZMG, MSL (CCC 20/01/12 Datum -9.043m) DRILL FLUID: Drill Pro/Water								LOGGED BY: JXXM CHECKED: BMcD									
GEOLOGICAL														Ε	NG	SIN	EEF	RING DESCRIPTION
GEOLOGICAL UNIT,											9ND		E		ш		ŋ	SOIL DESCRIPTION
GENERIC NAME, ORIGIN.			(%							MBC	THER	~	SENG		SSIVI GTH		ACIN	Soil type, minor components, plasticity or
MINERAL COMPOSITION.			ERY (TESTS				NO S	WEA-	NSIT NO	R STF		APRE REV	(MP	CT SI	ROCK DESCRIPTION
	ss		COVE			12313		Ê	LOG	CATIC	u Z	HUDE	HEA	Į	SIS		DEFE	Substance: Rock type, particle size, colour,
	D LO	ËR	E RE	ВР	ß		PLES	(L)	PHIC	SSIFI	STUR	ENGT	0				-	minor components.
	FLUI	WAT	COR	MET	CAS	2	SAM	DEP. I.	GRA	CLA	MOIS	STRI CLA	2339 2339			220g	1,120	roughness, filling.
Christchurch									Λ	1				Ħ				No Recovery: 10.0 - 10.5m.
Formation									$ \rangle/ $									
								L -	X									-
									$ / \setminus$									
					_			10.5	<u>/ `</u>	<u> </u>			╢╢					End of Borobole at 10.5m
								E										Target Depth Reached
								-9.0 -										
								L _										
								- 11.0-										11.0-
								L -										
								_ =										
								- 11.5-										
								-										
								E ^{-10.0} =										
								= =										
								- 12.0-										12.0-
																		-
								L 1										
								- 12.5-										12.5-
								=										
								E-11.0 =										
								=										
								- 13.0-										13.0-
																		-
								- 13.5-										13.5-
								= 120 =										
								-12.0 -										
								-										
								= ^{14.0} -										14.0-
								-12.5 -										
2								<u> </u>						$\left \right $:
								- 14.5-										14.5-
1 1147								= 12.0										
														$\left \right $				
								F =						$\left \right $				
								15										:

Log Scale 1:25

BORELOG-TC3 2013-09-10.JXXM.GROUNDIMPROVEMENTBOREHOLES.GPJ 17-Sep-2013

15C Amber Crescent, Judea, Tauranga New Zealand p. +64 7 571 0280 **f.** +64 7 571 0282

LAB REF: 1014/13 JOB NO: 650885.000

ſ

w. www.geotechnics.co.nz

TREX LABORATORY TESTING, WORKSTREAM 1B								
TEST RESULTS								
Avondale Christchurch AVD-TCR01-BH007								

	TEST RESULTS											
SAMPLE IDENTIFICATION	ĽL	PL	PI	FINES CONTENT PASSING 75µm (%)	WATER CONTENT (%)							
0.6m				24.15	26.5							
1.1m	31	22	9	64.92	22.7							
2.0m				50.76	29.4							
3.0m				6.24	22.7							
4.0m				6.73	21.9							
5.0m				10.88	21.1							
6.0m				4.07	24.3							
7.0m				4.46	22.4							
8.0m				6.67	21.4							
9.1m				12.08	25.7							
9.8m				3.55	23.9							
est method for Liquid Limit, Plastic Limit and Plasticity Index: ASTM D4318-10												

CHECKED:	http://www.ality.com
DATE:	16/9/13

Appendix C As Built Details

As-Built

TEST 1 - NZTA M6 Grade 2 Chip Pipe Haunching

PIPE EMBEDMENT FOR FLEXIBLE PIPES

SSUE DATE	FEB 2014
	-04E
500	315

SHEET 1 OF 1

As-Built

TEST 2 - NZTA M4 AP20 Pipe Haunching

DIAMETER DN	TRENCH WIDTH B					
100	460					
150	500					
175	550					
200	575					
225	600					
250	630					
300	700					
375	800					
475	1100					

NOTES:

- 1. SEE PROJECT SPECIFICATION FOR EMBEDMENT MATERIAL DETAILS.
- WHERE THERE IS AN IDENTIFIED RISK OF SOIL PARTICLE MIGRATION, EITHER WRAP THE WHOLE EMBEDMENT IN GEOTEXTILE OR CONSTRUCT TRENCH STOPS. SEE PROJECT SPECIFICATION FOR DETAILS.
- 3. FOR NON-PRESSURE PVC UP TO 3.5m DEEP, PIPE CLASS TO BE SN16 FOR DIAMETERS DN100 - DN475. OTHER CASES REQUIRE SPECIFIC DESIGN.

PIPE EMBEDMENT FOR FLEXIBLE PIPES

FEB 2014

SHEET 1 OF 1

ISSUE DATE

10001-DE-WW-DG-6309.dwg

As-Built

TEST 6 - Smartstream DN600 Manhole

NOTES:

- Lid: 200mm thick 1.35m OD concrete lid with 600mm opening. [HN-HO-72 designed lid used for 1.05m manhole]

- The top of the riser part at the chamber should be installed to penetrate halfway into the 600mm opening (100mm).

RL to CCC Drainage Datum

PVC PIPE FOR TRENCHLESS INSTALLATION simply secure

Iplex Pipelines (NZ) Ltd has developed Iplex **RESTRAIN**[™] specifically for gravity pipeline projects installed using trenchless technology. With an easy to assemble threaded socket and spigot joint together with a rubber seal ring, **RESTRAIN**[™] brings the advantages of PVC pipe systems to the trenchless industry.

RESTRAIN™ is suitable for use in a range of applications...

- Gravity sewer
- Gravity stormwater
- Electrical/telecommunications ducting
- Ducting

and installation methodologies*...

- Horizontal directional drilling
- Auger boring
- Guided boring
- Pipe bursting/cracking

The RESTRAIN™ system offers significant on site benefits.

Feature	Benefit
Threaded socket and spigot joint.	Easy to assemble, no special tools or training required. No solvent cement or fusion welding required. Joints can be undone and pipe re-used if necessary.
Pipe lengths customized to suit installation / project requirements.	Enables use with a range of installation technologies or site requirements. Pipe available in lengths from 1m to 6m.
Compatible with industry standard PVC sewer and stormwater fittings	Simple connection to manholes and service laterals.
Two directional installation capability	Pipe can be "pushed" or "pulled" into place depending on installation methodology
High performance rubber seal ring	No risk of leaks or root infiltration.
Complies with relevant industry Standards - AS/NZS 1260 , AS 2053	Product meets proven performance levels.
Manufactured from uPVC pipe	Stiffer than PE pipe of equivalent dimensions making it more suitable for installation on flat grades.

Product Range

Sewer/Stormwater

Pipe Size	Pipe OD/mm	Pipe Specification	Maximum Tensile Load During Installation	Maximum Compressive Load During Installation
DN100	110	AS/NZS 1260 SN16	1,800 kg	1,800 kg
DN150	160	AS/NZS 1260 SN16	3,500 kg	3,000 kg
DN225	250	AS/NZS 1260 SN16	9,500 kg	9,500 kg
DN300	315	AS/NZS 1260 SN16	12,000 kg	12,000 kg

Pipe is manufactured in accordance with AS/NZS 1260: 1999. PVC pipes and fittings for drain, waste and vent applications.

Elastomeric seal ring complies with Section 3.4 of AS./NZS 1260

• Cl. 3.4.2 - Hydrostatic pressure test in accordance with AS/NZS 1462.10

• Cl. 3.4.3 - Liquid infiltration test in accordance with AS/NZS 1462.8

• Cl. 3.4.4 - Contact width and interface pressure test in accordance with AS/NZS 1462.13

Cable Duct

Pipe Size	Pipe OD/mm	Pipe Specification	Maximum Tensile Load During Installation	Maximum Compressive Load During Installation
DN100	110	AS 2053 Light Duty	1,800 kg	1,800 kg
DN150	160	AS 2053 Light Duty	3,500 kg	3,000 kg
DN225	250	AS 2053 Light Duty	9,500 kg	9,500 kg

Pipe is manufactured in accordance with AS 2053; 1984. Non-metallic conduits and fittings.

Iplex Pipelines NZ Limited.

Call Centre - Phone: 0800 800 262 Fax: 0800 800 804 Web: www.iplex.co.nz

⁺ Disclaimer: RESTRAIN™ is not suitable for use in pipe ramming or impact moling. However, as terminology and definitions of trenchless methods do vary, please contact lplex Pipelines to confirm that RESTRAIN™ is compatible with your installation technology.

Offices At:

Auckland: PO Box 13772, Onehunga, 2 Rockridge Avenue, Penrose. Palmerston North: Private Bag 11019, 67 Malden Street. Christchurch: PO Box 16225, 22 Braeburn Drive, Sockburn.

Concrete Manhole Systems strength and durability

Access for Wastewater or Stormwater Systems

Humes manholes are extensively used throughout New Zealand. Made from strong, dense concrete Humes manholes are capable of withstanding infiltration and attack from corrosive environments. Components such as lids can be designed to HN-HO-72 loadings when required. Design expertise from experienced engineers is available for assistance on standard and non-standard products.

Features

- Strength and durability
- Manufactured to New Zealand standards
- Reinforced
- Modular precast system

Benefits

- High resistance to infiltration and leaking
- Able to meet all design requirements
- Reduced construction time with fewer traffic hold-ups, when compared to cast insitu

Applications

- Stormwater Manholes
- Sewer Manholes
- Pipeline junctions
- Pipeline direction changes

Concrete Manhole Systems strength and durability

A Humes manhole is comprised of many components. These pages are guide to Humes standard sizes and weights.

Frames And Covers

Generally these are of cast iron or ductile iron construction conforming to the requirements of the appropriate local authority.

Riser sections: Mass Data (kg) — Concrete density 2500

Nominal Diameter	Nominal Riser Length (mm)									
mm	300	600	900	1200	1500	1800	2100	2400**		
300	23	45	68	91				185		
450	44	89	133	177				360		
600	68	136	204	272	340	409		553		
750	98	195	293	391	489	586		795		
900	131	261	392	523	654	784	915	1063		
1050	170	341	511	681	851	1022	1192	1385		
1200	213	425	638	851	1064	1276	1489	1730		
1350	258	516	775	1033	1291	1549	1807	2100		
1500	286	572	858	1143	1429	1715	2001	2325		
1800	403	805	1208	1611	2013	2416	2819	3275		
2050*	513	1027	1540	2053	2567	3080	3593	4175		
2300	732	1463	2195	2926	3658	4389	5121	5950		
2550	1057	2115	3172	4230	5287	6344	7402	8600		
3060								10675		

Notes:

- Standard sizes vary from region to region. Check local sales centre for availability
- Non-standard sizes can be manufactured upon request

*Even though this size is commonly referred to as 1950, the actual diameter is closer to 2050

Actual length is 2440 and weights are given accordingly *Designed in conjuction with leading local government engineers. Humes new titan manhole has been developed to provide a positive seal. Mastic or silicon sealant is used to obtain a flexible joint and epoxy for where rigid joints are required. Lids and risers locate easily and are less difficult to set up for jointing when compared to the conventional manhole joint. (currently available in 1050mm dia units)

Flanged Base Slab: Mass Data (kg) — Concrete density 2400

External Diameter	Internal Diameter	Nomi	Nominal Base Thickness (mm)							
mm	mm	100	150	200	250					
1330	900	333	500							
1495	1050	421	632							
1660	1200	519	779							
1825	1350	628	942							
1975	1500	735	1103							
2310	1800	1006	1509	2012						
2540	2050		1824	2432						
2870	2300		2329	3105						
3180	2550		2859	3812	4765					
3710	3060		3892	5189	6486					

Freephone 0800 502 112

Riser Sections

All manhole lengths have flush joint male and female type ends. Provision is made in 1050 diameter risers for the following two options:

- Humes joint clamps
- New tongue and groove flush joint

Flanged Base Slab

Standard manhole flanged bases comprise circular slabs with minimum thicknesses shown in the table below.

The flange projects 150mm from the outer diameter of the manhole riser to provide resistance to floatation.

These reinforced base slabs are factory cast into a manhole riser of any specified

standard length.

Provision is made for lifting and placing using swiftlift anchors.

Notes:

· Add appropriate riser mass to obtain overall mass of complete base unit

www.humes.co.nz

Adjustment Rings

Humes reinforced concrete adjustment rings have an internal diameter of 520mm (outside diameter 675mm) and are available in thicknesses from 30 to 300mm. The rings are placed over the opening in the manhole lid to make the final height adjustment when placing the frame and cover.

Lids

Reinforced concrete flat lids have diameters which conform to the outer diameters of manhole risers.

The standard opening of 530mm diameter is eccentrically located approximately 150mm radially from the inside of the manhole wall. Swiflifts are provided.

The minimum thicknesses of standard lids are given in the table below.

Ladder Rungs

Standard rungs comprise mild steel hot dipped galvanised units of 20mm diameter, 250mm width and 150mm depth; of plain or stepped (safety) type.

Rungs are supplied complete with nuts and steel and rubber washers. See inset diagram for assembly detail.

Provision is made in riser sections for rungs to fitted at 300mm intervals.

Stainless steel and plastic coated rungs are available, as are various types of ladders.

Unflanged Base

Freephone 0800 502 112

The standard unit comprises a base cast into the bottom section of a manhole riser. Thicknesses vary according to the manhole diameter, or client's specification. All bases have reinforcement which is keyed into the riser wall.

Adjustment Rings

Density 2400

Nominal Weight (kg)	11	18	25	35	45	81	112	134
Thickness (mm)	30	50	75	100	150	200	250	300

Lids: Mass Data (kg) — Concrete

External Internal Nominal Lid Thickness (mm) Opening

Diameter	Diameter						
mm	mm	75	100	150	200	250	
365	300	19	25				None
540	450	41	55				None
700	600	69	92				None
865	750	106	141	220			None
1030	900		200	300			None
1195	1050		216	324	432	541	530mm
1360	1200		296	444	591	739	530mm
1525	1350		385	578	771	964	530mm
1675	1500		476	714	952	1190	530mm
2010	1800			1063	1417	1771	530mm
2240	2050			1339	1786	2232	530mm
2570	2300			1788	2384	2980	530mm
2880	2550			2266	3021	3776	530mm
3410	3060			3208	4278	5347	530mm

Note

Add appropriate riser mass to obtain overall mass of complete base unit.

Unflanged Base: Mass Data (kg) - Concrete Density 2400

Internal Diameter	Nomina	al Base T	hickness	(mm)	
mm	75	100	150	200	250
300	13	17			
450	29	38			
600	51	68			
750	80	106			
900		153	229		
1050		208	312		
1200		271	407		
1350		344	515		
1500		424	636		
1800		611	916	1221	
2050			1188	1584	
2300			1496	1994	
2550			1839	2451	3064
3060			2647	3530	4412

Installation

The Swiftlift Manhole Lifting System

The Swiftlift Manhole Lifting System utilises specially designed spreader beams that are available for sale or hire from your local Humes outlet or branches of Alan H. Reid Engineering Ltd. The spreader beam has three chains which enables it to be used for single, double or three point lifts. When lifting a manhole lid with three lifting points the middle chain should be attached to the lifting point closest to the access hole. This minimises the load being applied to the centre of the beam.

Sealing Strip BM100

Commonly referred to as BM100, a preformed grey sealant based on high molecular weight cross linked butyl rubber. Used to join manhole risers, this product has a moderate amount of surface tack and deforms readily under moderate loading. Has a moderate amount of surface tack and deforms readily under moderate loading. To ensure a water tight seal, do not stretch the strip to fit the joint diameter. Instead, join two strips together ensuring an overlap of product of at least 50mm at each join in the strip. Has shelf life of 6 months when sealed and stored in cool dry conditions.

Titanseal

Titanseal is a self-adhering butyl rubber compound extruded into ready to use tape form for non-structural permanent, weathertight sealing of concrete surfaces. Titanseal in easy to handle rolls of tape with virtually unlimited storage life is easily applied, especially in confined spaces as there is no mixing and no agitation of the product. Titanseal can even be made to tack to damp surfaces, but it is prepared to be used on a dry primed surface. Titanseal adheres immediately, does not shrink and is unaffected by prolonged climate exposure.

For instructions on use, please refer to manufacturers instructions.

Humebond Epoxy Mortar

Used to join manhole risers and repair, although this can differ from area to area, eg cement mortar used as an alternative.

Disclaimer: Buyers and users of the products described in this brochure must make their own assessment of the suitability and appropriateness of the products for their particular use and the conditions in which they will be used. All queries regarding product suitability, purpose or installation should be directed to the nearest Humes Sales Centre for service and assistance. © Fletcher Concrete and Infrastructure Limited 2004. Humebond Epoxy Mortar is a convenient to use two part silica sand filled adhesive and jointing system developed especially for construction and concrete work. Humebond will cure under most conditions in thick film to an extremely hard durable surface with negligible

exotherm and shrinkage. Suitable as a patching and forming compound for all concrete products. Used to seal concrete in drainage and construction applications.

Humes Joint Clamps

In some regions this jointing system is required to hold risers, lids and bases together to maintain water tightness where manholes could be subject to lateral forces. The system uses galvanised mild steel clamps fitted across the joints after the placement of a sealing compound. Clamps are fitted after the basic construction of the manhole.

Non-standard manholes

Components of non-standard type and dimensions can be produced for special applications, such as pumping stations wells and shafts. These requirements should be discussed with the nearest Humes sales office.

Manufacturing standards

Humes Concrete Manholes are manufactured to pipe standards NZS 3107:1978 and precast standards NZS 3109:1997 with surface finishes to NZS 3114:1987.

POLYETHYLENE 600 MINI MANHOLE

One Piece Rotomolded Polyethylene Construction Does Not Require Concrete Encasement

0800 WE PIPE (93 7473) www.**hynds**.co.nz

Rotomolded LMDPE mini manhole for sewer or stormwater.

Application

Sewer or stormwater

Features

- One piece rotomolded polyethylene construction
- Very robust 13mm wall thickness
- Welded one piece unit eliminates root intrusion and groundwater ingress
- Does not suffer from gas attack (Internal or external)
- Manufactured to suit all types and sizes of pipe
- Lightweight one piece construction
- Does not require concrete encasement
- For installation from 600mm invert to 1.8m invert
- All units are pressure tested prior to dispatch

Installation

- Bedding material is as per local council requirements
- Units supplied to suit any junction requirement or configuration
- Connect downstream and ensure that top of chamber is level
- Pack / tamp to support product
- Connect upstream
- Backfill and compact
- Install concrete cover slab and access cover

Design Specifications

- 600mm spherical base has excellent hydraulic properties
- All independent tests show zero deterioration after 50 Years
- Polyethylene does not suffer from gas attack

Testing

Designed, manufactured and independently tested to meet AS/NZS, and ASTM.

Durability

All FEA testing shows zero deterioration after 50 years. PE does not suffer from gas attack.

Precast Cover Slab and Class D cover

Description

600 mini manhole for 150 PVC RRJ 2 way connection
600 mini manhole for 160 o/d PE 2 way connection
600 mini manhole for 180 o/d PE 2 way connection
600 mini manhole for 250 o/d PE 2 way connection

Branches Nationwide Refer to www.hynds.co.nz for further branch details

Support Office & Technical Services 09 274 0316

• Northland Whangarei • Auckland Warkworth, Albany, Avondale, Penrose, Manukau, Pukekohe • Waikato Hamilton, Te Kuiti, Taupo

Bay Of Plenty Tauranga, Rotorua Taranaki New Plymouth Manawatu Palmerston North Wellington Masterton, Kapiti, Petone, Kaiwharawhara

•Hawkes Bay Hastings •Nelson/Malborough Nelson, Blenheim •Otago/Southland Oamaru, Dunedin, Cromwell, Winton, Invercargill

• Canterbury Amberley • Christchurch Hornby, Bromley, Waimak

Disclaimer: While every effort has been made to ensure that the information in this document is correct and accurate, users of Hynds product or information within this document must make their own assessment of suitability for their particular application. Product dimensions are nominal only, and should be verified if critical to a particular installation. No warranty is either expressed, implied, or statutory made by Hynds unless expressly stated in any sale and purchase agreement entered into between Hynds and the user.

0800 WE PIPE (93 7473) www.**hynds**.co.nz

Appendix D Construction QA Records

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanganui Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job		SCIRT	trench tria	als	1255-5-1	a theory		L	ab Ref	13/28	6
Material/	Origin	Fine grey s	subgrade sand e	ex trench				F 1 -	Report No.	132861	
Condition	n l	wet			Date of report 25/10/2013						
Sampled	by	TestLab				Dat	e sampled	9/10/20	13		
Sampling	method	ex trench						Dat	e received	16/10/20	13
Client		MacDow C	anterbury, attn	: Mr Clark				D	ate tested	17/10/20	13
Commen	ts										
Test Meth	ods used										
Particle Si	ze Distributi	on - NZS 440	7:1991 Test 3.8.1	I Method by	Wet Sieving						
				,							
	1	Particle Size	<u>e Distribution</u>			Particle Siz	ze Distribution	1			
		Coars	e sizes	1.1		Fin	e Sizes				
	Size	Coarse	Cumulative	Fine	Size	Coarse	Cumulative	Fine			
	Size	Limit	Percent	Limit	Size	Limit	Percent	Limit			
	Size		Passing		Size		Passing				
	(mm)	(%)	(%)	(%)	(<i>mm</i>)	(%)	(%)	(%)	1		
	75.0		100		1.18		100				
	63.0		100		0.60		100				
	53.0		100		0.425		100				
	37.5		100		0.300		100				
	26.5		100		0.150		70				
	19.0		100		0.090		24				
	13.2		100		0.075		14				
	9.50		100								
	6.70		100								
	4.75		100								
PERCENTAGE FINER THAN	80 70 60 50 40 30 20 10		/ / / / /								
	0 +		┥ _{┥┥}		<u>╺</u> ╎╸┥╺┿┿╶┝╎╸╎		┼╸╸╎═╾┿╴┟╶┥╶┾┿┿			<mark>→</mark> ↓↓↓	
	0.01		0.1		1		10	0		100	
					PARTICLE	SIZE (mm)					
All tasts ra	norted herei	in have been n	orformed in accord	danca with th	o Laboratory/c	Approved Si	ianatory				
scope of ac	creditation.	in nave been p	eriormea in accord	uance with th	ie Laboratory's		,0//	1 1			
Chie Laborat	tory Test Repo	ort is confidentia	I and may be legally	y privileged.	This report may	M R Clevela	nd Allu	eland			
only he rear	oduced in full	Alteration of	the TANZ Accreditati	ion status will	invalidate this	1					
only be repr est Report.	oduced in full Please cont	. Alteration of act the Laborato	the IANZ Accreditat ory to verify the stat	ion status will us	invalidate this	Date		29.10.13	3		

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanganui Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

	and the second		and the second se						
Job	SCIRT	Trench Tri	als				L	_ab Ref	13/289
Material/Origin	Silty grave	el ex MH test 6 @	0.6m					Report No.	132891
Condition	Damp						Dat	e of report	20/10/2013
Sampled by	Client						Da	te campled	23/10/2013
Sampling method	ex trench/	unknown					Da	te sampled	21/10/2013
Cliont	MacDow C	antarbury attai	Mr Clark				Da		22/10/2013
Client		anterbury, attr:			L	Date tested	25/10/2013		
Comments						÷			
Test Methods used							l,		
Particle Size Distribut	on - NZS 440	7:1991 Test 3.8.2	Subsidiary	Method by D	ry Sieving - tes	t on oven-dried s	pecimen		
					, ,				
1	Particle Size	<u>Distribution</u>			Particle Si	ze Distribution	1		
	Coars	e sizes			Fin	e Sizes			
Size	Coarse	Cumulative	Fine	Size	Coarse	Cumulative	Fine		
Size	Limit	Percent	Limit	Size	Limit	Percent	Limit		
Size		Passing		Size		Passing			
(<i>mm</i>)	(%)	(%)	(%)	(<i>mm</i>)	(%)	(%)	(%)	_	
75.0		100		2.36		77]	
63.0		100		1.18		76		1	
53.0		100		0.600		75		1	
37.5		100		0.425		74		1	
26.5		94		0.300		73		i i	
19.0		92		0.150	1	55			
13.2		87		0.075		33			
9.50		84						1	
6.70		81		-					
4.75		80		-					
4.75		00							
100 90 80 70 60 50 40 40 30 20 10 0.01		0.1		PARTICLI		1	0		100
All tests reported here scope of accreditation. This Laboratory Test Repr only be reproduced in full Test Report. Please cont	in have been p ort is confidentia . Alteration of cact the Laborato	erformed in accord Il and may be legally the IANZ Accreditatio ry to verify the statu	ance with t privileged. on status will is	he Laboratory This report ma invalidate this	rs Approved S ay M R Clevela	ignatory nd	reland		

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanganui

Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job	AP65 Stock Check	Lab Ref	13/281
Material/Origin	Ex Winstones West Coast Rd Crusher	Report No.	132811
Condition	Damp	Date of report	21/10/2013
Sampled by	TestLab	Date sampled	11/10/2013
Sampling method	NZS4407:Cl:2.4.2.6.2	Date received	16/10/2013
Client	MacDow Canterbury, attn: Mr Clark	Date tested	18/10/2013
Comments	A typical AP65 grading envelope is shown as a guideline.		

Test Methods used

4.75

Particle Size Distribution - NZS 4407:1991 Test 3.8.2 Subsidiary Method by Dry Sieving - test on oven-dried specimen

35

	Particle Size Distribution Coarse sizes					<u>Particle Size Distribution</u> Fine Sizes			
5	Size	Coarse	Cumulative	Fine		Size	Coarse	Cumulative	Fine
5	Size	Limit	Percent	Limit		Size	Limit	Percent	Limit
5	Size		Passing			Size		Passing	
((mm)	(%)	(%)	(%)		(mm)	(%)	(%)	(%)
7	75.0	100	100	100][2.36	0	19	30
6	53.0	100	100	100] [1.18	0	16	25
5	53.0	0	100	100] [0.600	0	15	20
3	37.5	0	88	100] [0.425	0	13	15
2	26.5	0	68	100		0.300	0	12	10
1	19.0	0	51	60][0.150	0	9	8
1	13.2	0	41	50][0.075	0	8	4
9	9.50	0	35	45					
6	5.70	0	29	40					

Date

24

0

Approved Signatory 29.10.13 M R Cleveland

This Laboratory Test Report is confidential and may be legally privileged. This report may only be reproduced in full. Alteration of the IANZ Accreditation status will invalidate this Fest Report. Please contact the Laboratory to verify the status

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanganui Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job	Job G2 Chip Stock Check								Lab Ref 13/284		
Material/Origin 21/15 Seal Chip ex Winstones West Coa						d Cru	sher			enort No	1378/1
										Report No. 132841	
Sampled	by	Testlab							Date	sampled	11/10/2013
Sampled	method	NZS4407	CI:2.4.6.2.1						Date	e received	16/10/2013
Client	,	MacDow C	anterbury. attn:	Mr Clark					Date	ate tested	23/10/2013
Commen	Comments										
Test Meth	ods used								-		
Particle Si	ze Distribut	ion - NZS 440	7:1991 Test 3.8.2	Subsidiary	Method	by Dry	Sieving - test	on oven-dried s	pecimen		
	1	Coars					Particle Siz	e Distribution	<u>n</u>		
	Cizo	Coarco	Cumulativo	Fino		izo	Coarco	Cumulativo	Fino		
	Size	Limit	Percent	Limit	5	ize	Limit	Dercent	Limit		
	Size	LIIIIC	Passing	LIIIIL	5	ize	Linne	Passing	Linne		
	(mm)	(%)	(%)	(%)	0	mm)	(%)	(%)	(%)		
	75.0	(70)	100	(70)		.36	(10)	0	(,,,,)		
	63.0		100			.18		<u> </u>			
	53.0		100			.600					
	37.5		100			.425					
	26.5		100			.300					
	19.0		95			.150					
	13.2		16		0	.075					
	9.50		1								
	6.70		1		1						
	4.75		0								
	100								~		┝┯╋╷╷╷
	90										
7	80								i		
. ₹											
Ē	70										++++
L L	60										
N N											
L L	50								1		
AG	40										
L L											
U III	30							· · · ·	,		
ľ.	20										
<u> </u>	40								1		
	10								1		
	0 +					┢┿┿╎┿			· · · · · ·		<mark>→</mark>
	0.01		0.1			1		1	0		100
2					PAR		SIZE (mm)				
1											
1											
1											
All tosts	norted hars	in have been a	erformed in accord	lance with t	he lahe	ratory's	Approved Si	ignatory			
scope of a	ccreditation.	in nave been p		ance with t		atory S	1	,04	111		
This Labora	tory Test Ren	ort is confidentia	al and may be legally	privileged	This re-	ort may	M R Clevela	nd Hill	veland		
only be repr	roduced in ful	I. Alteration of	the IANZ Accreditat	on status wil	ll invalida	te this		fen		,	
Test Report	. Please con	tact the Laborat	ory to verify the stat	us			Date	-	29.10.13	>	

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanganui

Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job SCIRT trench trials							L	ab Ref	13/293
Material/Origin 14/10 chip ex test 4 lateral haunching							F	Report No	132031
Condition Dry						Date	of renort	29/10/2013	
Sampled by	Client						Dat	e sampled	21/10/2013
Sampling method	ex trench/ur	nknown					Dat	e received	22/10/2013
Client	MacDow Car	nterbury, attn:	Mr Clark				D	ate tested	25/10/2013
Comments									
Test Methods used									
Particle Size Distributi	on - NZS 4407:	1991 Test 3.8.2	Subsidiary M	lethod by Dry	Sievina - test	on oven-dried s	pecimen		
			ease and y t		cieving ces				
E	Particle Size	<u>Distribution</u>		1	Particle Siz	ze Distribution	<u>1</u>		
	Coarse	sizes			Fin	e Sizes			
Size	Coarse	Cumulative	Fine	Size	Coarse	Cumulative	Fine		
Size	Limit	Percent	Limit	Size	Limit	Percent	Limit		
Size	(01)	Passing	(0/)	Size	(01)	Passing	(0)		
	(%)	(%)	(%)	(<i>mm</i>)	(%)	(%)	(%)		
/5.0		100		2.36		0			
53.0		100		1.18					
37.5		100		0.000					
26.5		100		0.300					
19.0		100		0.150					
13.2		92		0.075					
9.50		45		•					
6.70	6								
4.75		1							
00 00 00 00 00 00 00 00 00 00		0.1		1 PARTICLE S	elize (mm)	1			100
All tests reported herein scope of accreditation. This Laboratory Test Repo only be reproduced in full. Test Report. Please conte	n have been per rt is confidential a . Alteration of th act the Laboratory	formed in accord and may be legally e IANZ Accreditatic y to verify the statu	ance with the privileged. T n status will ir s	: Laboratory's This report may avalidate this	Approved Si M R Clevelar Date	gnatory nd <u>Hylluo</u> 29.	ela-d 10.13		

Particle Size Distribution

57 Putiki Drive P O Box 4256 Wanaanui

Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job	SCIRT trench trials	Lab Ref	13/294
Material/Origin	8/10 pea metal/rounds	Report No.	132941
Condition	Dry	Date of report	29/10/2013
Sampled by	Client	Date sampled	21/10/2013
Sampling method	ex trench/unknown	Date received	22/10/2013
Client	MacDow Canterbury, attn: Mr Clark	Date tested	25/10/2013
Comments			
Tost Mothoda used			

est Methods used

Particle Size Distribution - NZS 4407:1991 Test 3.8.2 Subsidiary Method by Dry Sieving - test on oven-dried specimen

All tests reported herein have been performed in accordance with the Laboratory's scope of accreditation.

Approved Signatory

Date

This Laboratory Test Report is confidential and may be legally privileged. This report may only be reproduced in full. Alteration of the IANZ Accreditation status will invalidate this Test Report. Please contact the Laboratory to verify the status

M R Cleveland

fliceland 29.10.13

AP20 Basecourse

57 Putiki Drive P O Box 4256 Wanganui Phone 348 4199 Fax 06 348 7399 office@testlab.co.nz

Job	AP20 Stock Check	Lab Ref	13/283
Material/Origin	M4 AP20 ex Winstones West Coast Rd. Crusher	Report No.	132831
Condition	Damp	Date of report	25/10/2013
Sampled by	TestLab	Date sampled	11/10/2013
Sampling method	NZS4407:Cl:2.4.6.2.2	Date received	16/10/2013
Client	MacDow Canterbury, attn: Mr Clark	Date tested	18/10/2013
Comments			

Test Methods used

Sand Equivalent - NZS 4407:1991 Test 3.6 - hand shaking

Particle Size Distribution - NZS 4407:1991 Test 3.8.1 Preferred Method by Wet Sieving - % passing 75um was obtained by difference Broken Faces content of Aggregate - NZS 4407:1991 Test 3.14

Fraction Limits (mm)	Low Limit (%)	Within Fraction	High Limit (%)
Fraction 19.0-4.75 mm	28	59	48
Fraction 9.5-2.36 mm	14	44	, 34
Fraction 4.75-1.18 mm	7	20	27
Fraction 2.36-0.600 mm	6	11	22
Fraction 1.18-0.300 mm	5	8	19
Fraction 0.600-0.150 mm	2	9	14

All tests reported herein have been performed in accordance with the Laboratory's scope of	Approved Signatory
accreditation.	M. D. Clausiand University
This Laboratory Test Report is confidential and may be legally privileged. This report may only be reproduced in full. Alteration of the IANZ Accreditation status will invalidate this Test Report.	M R Cleveland
Please contact the Laboratory to verify the status of this document.	Date 29.10.13

DENSITY TEST REPORT

Project :	Material Investigation
Location :	SCT-SCT#1405
Client :	City Care Laboratory
Contractor :	City Care Laboratory
Sampled by :	Not Advised
Date sampled :	Not Advised
Sampling method :	Not Advised
Sample description :	SCIRT & EQC Liquifaction Trial
Sample condition :	Air Dry as Received

Project No :	6-JCITY.14/006LC
Lab Ref No :	12297
Client Ref No :	PO914917487

	Test Results						
		Sample 1	Sample 2				
	Density (t/m³)	1.58	1.52				
Test Mathed			Notos				
Density	NZS 3	112:1986, Part 1, Test 1.4	Sampling is outside the labo	ratory's scope of accreditation			
Density	NZS 3	112:1986, Part 1, Test 1.4	Sampling is outside the labo	ratory's scope of accreditation			

Date tested : 18 I Date reported : 18 I

18 February 2014 18 February 2014 Sampling is not covered by IANZ Accreditation. Results apply only to sample tested. This report may only be reproduced in full

IANZ Approved Signatory

Designation : Date : Senior Civil Engineering Technician 18 February 2014

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

PF-LAB-004 (30/05/2013)

Opus International Consultants Ltd Christchurch Laboratory Quality Management Systems Certified to ISO 9001 52C Hayton Rd, Wigram PO Box 1482, Christchurch Mail Centre, Christchurch 8140, New Zealand Page 1 of 1

Telephone +64 3 343 0739 Facsimile +64 3 343 0737 Website www.opus.co.nz

Canterbury Laboratory 325 Pound Rd, Yaldhurst

Fulton Hogan

Nuclear Density Report

Client:

Tru-Line Civil Limited PO Box 522

Greymouth 7840

Project: QA Testing - Tru-Line Drainage Ltd

Testing Details						
Site Tested:	Trenchline, Androssan Street, Avondale					
Tested By:	Daniel Daly					
Date Tested:	17/10/13					
Time Tested:	08:30					
Material:	Compacted On-site Material					
Specification:	ND - Testing 4431:1989 Cohesive					
Field Methods:	NZS 4407:1991 Test 4.2.2					

www.fultonhogan.com 0800 LABORATORY Report No: ND:CAN13W4181 Issue No: 1

PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143

The test (s) reported herein (unless indicated) have been performed in accordance with the laboratory's scope of accreditation. Results only apply to samples as received. This report must be reproduced in full.

LANZ ACCREDITED LABORATORY

Aldeveland

Approved Signatory: Murray Cleveland (Lab Technician) IANZ Accreditation No:200 Date of Issue: 23/10/13

lest Results				
Site No	Layer	Moisture (%)	Wet Density (t/m ³)	Dry Density (t/m ³)
1	Layer 1	12.5	1.70	1.51
2	Layer 2	12.5	1.82	1.62
3	Layer 3	15.5	1.81	1.57
4	Layer 4	15.0	1.75	1.52
5	Layer 5	18.0	1.94	1.64

Comments

CAN13W4181

Test Site: Trenchline, Androssan Street, Avondale

Androssan Street

Site plan is not to scale & test sites are approximate only.

325 Pound Rd, Yaldhurst PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143 www.fultonhogan.com 0800 LABORATORY

Report No: ND:CAN13W4221

Issue No: 1

Nuclear Density Report

Tru-Line Civil Limited PO Box 522

Greymouth 7840

The test (s) reported herein (unless indicated) have been performed in accordance with the laboratory's scope of accreditation. Results only apply to samples as received. This report must be reproduced in full.

Approved Signatory: Maciej Gaworecki (Senior Civil Technician) IANZ Accreditation No:200 Date of Issue: 22/10/13

Project: QA Testing - Tru-Line Drainage Ltd

Testing Details			Compaction Target Details			
Site Tested:	Trenchline, Ardrossan Street, Avonda	le	Material Sample ID:	CAN13S-00633		
Tested By:	Daniel Daly		MDD Method:	NZS 4402:1986 Test 4.7	1.3 - 1986	
Date Tested:	17/10/13		Max. Dry Density:	2.34 t/m ³ @ 3.8 %		
Time Tested:	08:00		Min. Dry Density (t/m ³):	2.22		
Material:	Compacted 65mm Aggregate		Solid Density Type:	Assumed		
Specification:	ND - TNZ B/2 Sub-Base					
Field Methods:	NZS 4407:1991 Test 4.2.2					
Lab Methods:	NZS 4402:1986 Test 4.1.3 - 1986					
Test Results						
Site No	Layer	Moisture (%)	Wet Density (t/m ³)	Dry Density (t/m ³)	Relative Compaction (%)	

Site No	Layer	Moisture (%)	wet Density (t/m ³)	Dry Density (t/m³)	(%)
1	Final Layer	4.5	2.39	2.28	97.4
2	Layer 1	3.0	2.30	2.23	95.3
3	Layer 2	4.0	2.37	2.28	97.4
4	Layer 3	5.5	2.40	2.27	97.0
5	Layer 4	4.5	2.34	2.24	95.7

Comments

CAN13W4221

Test Site: Trenchline, Androssan Street, Avondale

Site plan is not to scale & test sites are approximate only.

						(Canterbury Laboratory
Fulton Hogan				325 Pound Rd, Yaldhurst PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143 www.fultonhogan.com 0800 LABORATORY			
						Report No:	: ND:CAN13W4255
Nuclear Density Report				Issue No: 1			
Client:	Tru-Li PO Be	ine Civil Limited ox 522				The test (s) reported been performed in ac scope of accreditatio as received. This rep	herein (unless indicated) have ccordance with the laboratory's n. Results only apply to samples fort must be reproduced in full.
	Greyr	nouth 7840			ACCREDITED	Approved Signato	ry: Maciej Gaworecki
Project:	QA Te	esting - Tru-Line Draina	age Ltd			IANZ Accreditation Date of Issue: 22	nician) n No:200 2/10/13
Testing Details			Compact	ion Ta	rget Details		
Site Tested:	Trenchl	ine, Androssan Street, Av	ondale	Material Sam	ole ID:	CAN11S-05164	
Tested By:	Daniel [Daly		MDD Method:		NZS 4402:1986 Test 4.	.1.3 - 1986
Date Tested:	18/10/1	3		Max. Dry Den	sity:	2.32 t/m ³ @ 4.6 %	
Time Tested:	08:00			Min. Dry Dens	sity (t/m³)	: 2.09	
Material:	Compa	cted 20mm Aggregate		Solid Density	Туре:	Measured	
Specification:	ND - TN	Z B/2 Basecourse					
Field Methods:	NZS 44	07:1991 Test 4.2.2					
Lab Methods:	NZS 44	02:1986 Test 4.1.3 - 1986					
Test Results							
Site No		Layer	Moisture (%)	Wet Density	′ (t/m³)	Dry Density (t/m³)	Relative Compaction (%)
1		Haunching	6.5	2.25		2.11	90.9

Comments

CAN13W4255

Test Site: Trenchline, Androssan Street, Avondale

Site plan is not to scale & test sites are approximate only.

Ε

Appendix E Explosion Ground Motion Data

SCIRT and EQC Liquefaction Trial Analysis of Accelerometer

Event Type	Full Waveform	
Serial Number	BE14104	
Version	V 10.52-8.17 Minim ate Plu	S
File Name	P104F1C8.MB0	
Event Time	15:34	:59
Event Date	October 24, 2013	
Trigger	Vert	
Geo Trigger Level	0.910 mm/s	
Pre-trigger Length	-0.250 sec	
Record Time	15.0 sec	
Record Stop Mode	Fixed	
Sample Rate	4096 sps	
Step Interval:	0.000244	141 sec
Battery Level	6.2 Volts	
Calibration	March 21, 2013 by Instantel	
Units	mm/s and pa.(L)	
Geo Range	254 mm/s	
Tran PPV	108 mm/s	
Vert PPV	*** mm/s	
Long PPV	137 mm/s	
Tran ZC Freg	5.2 Hz	
Vert ZC Freq	7.2 Hz	
Long ZC Freq	4.9 Hz	
Tran Time of Peak	8.500 sec	
Vert Time of Peak	4.327 sec	
Long Time of Peak	9 218 sec	
Tran Peak Acceleration	4 83 g	
Vert Peak Acceleration	23.8 g	
Long Peak Acceleration	7 32 g	
Tran Peak Displacement	3.68 mm	
Vert Peak Displacement	5.00 mm	
Long Peak Displacement	4 47 mm	
Peak Vector Sum	*** mm/s	
Peak Vector Sum Time	8 264 sec	
Microphone	Linear Weighting	
Micl PSPI	256 3 na (L)	
MicL Time of Beak	9 071 soc	
MicL 7C Freq	15.6 Hz	
Tran Test Fred	75 Hz	
Tran Test Patio	7.5 112	2.0
Tran Test Results	Passod	3.5
Vort Tost Frog	7 5 47	
Vert Test Pley	7.5 HZ	27
Vert Test Results	Passad	5.7
Long Tost Frog		
Long Test Petie	7.2 HZ	4.2
Long Test Results	Dascad	4.Z
Mich Test Results	20 E H7	
Mich Tost Amalituda	20.5 mz	
Miel Test Amplitude	430 IIIV	
WILL TEST RESULTS	rasseu Out of Pange	
Monitor Log(s)	Out of Kallge	
WUTILUT LUB(S)	(12 15.25.145.cont room -1 - 1	
DC SW/ Version	13 15:35:14Event recorded.	
PC AVV VEISION	VO.12 - 0.12	

Appendix F Pore Pressure Transducer Results

Calibration Correction

Pore pressure transducers (PPT) were installed at the site at depths of 2.8 m, 3.9 m, 4.65 m, 6.65 m and 9 m depth to measure the porewater response to the blasting. Additional PPTs were installed immediately beneath each chamber to record pore pressure at these locations.

Special PPT's were utilised to accommodate the very high blast pressure from the explosives. Calibration following the trial has identified that the transducers have a lower bound pressure which can be recorded (approximately 28 kPa, equating to about 2.4 m of static water head). For any pressure below the lower bound the PPT will recorded the lower bound value. A shift of 4.5 kPa was also identified during calibration as shown in Figure C1 below.

Figure C1: Example of PPT calibration

The transducers located beneath the chambers are approximately 1.0 m to 1.8 m below the ground water level. These PPTs are initially below the lower threshold and did not record increases in pore pressure until the pressure exceeded the threshold. An adjustment to the recorded PPT data has been made to account for the threshold and shift identified during calibration. For this adjustment an initial static groundwater level was adopted based on site observations. This is used to estimate the initial porewater pressure for each PPT. The adjusted change in porewater pressure is calculated by adding the difference between the PPT threshold and adopted initial porewater pressure to the PPT recorded value.

Where:

 $\Delta u = u_{PPT} + (u_{threshold} - u_{initial})$

 $\Delta u = change in pore water pressure$ $u_{PPT} = recorded PPT value$ $u_{threshold} = PPT threshold$ $u_{initial} = adopted initial pore water pressure$

SCIRT & EQC Liquefaction Trial

Interpretation of Pore Pressure Transducers

mfg

SCIRT & EQC Liquefaction Trial

Interpretation of Pore Pressure Transducers

mfg

9/01/2014

Appendix G Survey and Settlement Data

SCIRT and EQC Liquefaction Trial

31 ARDROSSAN MONITORING POINTS

McConnell Dowell

Pre - Liquefaction				Post Liquefaction			Difference	Difference			
Pt No.	тE	тN	RL	тE	тN	RL	тE	mN	RL		
PT A	396775.569	809912.409	10.578	396775.553	809912.387	10.480	-0.016	-0.022	-0.098		
PT B	396776.285	809912.455	10.582	396776.270	809912.439	10.488	-0.015	-0.016	-0.094		
PT C	396776.515	809911.740	10.581	396776.505	809911.725	10.492	-0.010	-0.015	-0.089		
PT D	396775.918	809911.361	10.579	396775.911	809911.342	10.486	-0.007	-0.019	-0.093		
PT E	396772.761	809911.129	11.107	396772.770	809911.104	10.954	0.009	-0.025	-0.153		
PT F	396771.851	809910.806	11.124	396771.859	809910.779	10.966	0.008	-0.027	-0.158		
PT G	396771.728	809911.704	11.141	396771.735	809911.676	10.984	0.007	-0.028	-0.157		
PT H	396772.475	809911.850	11.122	396772.484	809911.824	10.969	0.009	-0.026	-0.153		
PT I	396772.058	809911.530	10.950	396772.065	809911.503	10.798	0.007	-0.027	-0.152		
PT J	396772.425	809911.367	10.941	396772.430	809911.340	10.789	0.005	-0.027	-0.152		
РТ К	396772.124	809911.092	10.939	396772.132	809911.067	10.785	0.008	-0.025	-0.154		
PT L	396774.955	809906.210	10.409	396774.962	809906.202	10.397	0.007	-0.008	-0.012		
PT M	396775.151	809905.546	10.392	396775.156	809905.535	10.384	0.005	-0.011	-0.008		
PT N	396774.467	809905.640	10.397	396774.472	809905.632	10.393	0.005	-0.008	-0.004		
PT O	396773.993	809902.387	10.403	396773.995	809902.386	10.405	0.002	-0.001	0.002		
PT P	396774.510	809902.689	10.408	396774.511	809902.686	10.407	0.001	-0.003	-0.001		
PT Q	396774.463	809901.891	10.403	396774.465	809901.889	10.401	0.002	-0.002	-0.002		
PT R	396771.343	809904.689	10.238	396771.345	809904.689	10.231	0.002	0.000	-0.007		
PT S	396770.889	809904.097	10.222	396770.891	809904.095	10.214	0.002	-0.002	-0.008		
ΡΤΤ	396771.630	809904.141	10.221	396771.631	809904.138	10.218	0.001	-0.003	-0.003		

A3 SCALE 1:200

2 4 6 8 10 (m)

Location Plan

RAWN	JJXC	Sep.14	
HECKED	PWQ	Sep.14	
PPROVED	SVB	Sep.14	
RCFILE 52020-0200	L		
CALE (AT A3 SIZE)			D
1:20	Pr		
repared by Tonkin &	Taylor Lt	d.	
ef: 52020-0	023		

Ground Improvement Trials Site 4 (Avondale) 29 Ardrossan Street aser Terrestrial Scan Elevation Change oduction Blast 4-2 & 4-3 (Roof and Land)

Spacial seismic settlment of pipes within SCIRT test area

mfg 10/01/2014

Profile Elevation (mRL)

Settlement (m)

Test 2 - pipeline with AP20 haunching 9.500 9.250 9.000 8.750 8.500 8.250 8.000 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 11.0 Distance through Profilometer Pipe (m) Test 2a - Southeast

Profilometer Monitoring - 31 Ardrossan St, Christchurch

Settlement (m)

Settlement (m)

Profile Elevation (mRL)

Settlement (m)

10.500 10.250 10.000 9.750 9.500 9.250 9.000 8.750 8.500 8.250 8.000 7.750 7.500 7.250 7.000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Test 8a - South

Profile Elevation (mRL)

Distance through Profilometer Pipe (m)

Profilometer Monitoring - 31 Ardrossan St, Christchurch Test 8 - directionally drilled pipe

Profilometer Monitoring - 31 Ardrossan St, Christchurch

Settlement (m)

HydroTech

Ovality Observations Report

Copyright 2006 Page 1/1 Printed: 11/12/2013

Hydrotech Drainage Ph:03 366 1568

PROFILER

www.cleanflowsystems.com

Ovality Observations Report

DISCULLED	Hydrotech Drainage			Copyright 2006	Page 1/1
PROFILER	Ph:03 366 1568	www.clean	iflowsystems.com		Printed: 11/12/2013

HydroTech

Ovality Observations Report

PROFILER

Hydrotech Drainage Ph: 03 366 1568

www.cleanflowsystems.com

Copyright 2006 Page: 1/1 Printed: 11/12/2013

PROFILER 58690

Hydrotech Drainage Ph:03 366 1568

www.cleanflowsystems.com

Copyright 2006

Printed: 11/12/2013

Ovality Observations Report

City			Asset No.	Test 4			ь л	Date 17/10	/2013	
Start No CE4.1			Finish No	MH4.1			Pipeline L	ength	5.9 m	
Location Ardrossan St	t, Avondale		Location	Ardrossan St, Avo	ondale	Intern	al Diameter (Exp	ected)	150 mm	
6										
5										
6										
5										
5										
	lende									
	5 2	4.5			3.0	2.2		1.5		
	5.2	4.5	3.7		3.0	2.2				n n
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2	4.5 d Practice) as a perc	3.7 sentage of original pipe vers	us distance	3.0	2.2		1.5		n
Fractile: 1.5%	5.2 'q' (as per ASTM F 1216 Standar	4.5 d Practice) as a perc	3.7 zentage of original pipe vers	us distance	3.0	2.2		1.5	+ 2006	, n
Fractile: 1.5%	'q' (as per ASTM F 1216 Standar Hydrotech Drainage	4.5 d Practice) as a perc	3.7 zentage of original pipe vers	us distance	3.0	2.2		1.5 Copyright	t 2006	Page:
6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2 'q' (as per ASTM F 1216 Standar Hydrotech Drainage Ph: 03 366 1568	4.5 d Practice) as a perc	entage of original pipe vers	us distance v.cleanflowsystems	com	2.2		1.5 Copyright	t 2006 Printed: 11	Page: 1

	Hydrotech Drainage	Copyright 2006	Page 1/1	
PROFILER	Ph:03 366 1568	www.cleanflowsystems.com	Ř v	Printed: 11/12/2013
6				

Ovality Observations Report

Site ID		A	Asset No.	Test 5	Date	17/10/	/2013	
City					Material	pvc		
Start No	CE5.2	F	Finish No	MH1.2	Pipeline Length		4.08	m
Location	Ardrossan St, Avondale		Location	Ardrossan St, Avondale	Internal Diameter (Expected)		150	mm

PROFILER Hydrotech Drainage Ph: 03 366 1568

www.cleanflowsystems.com

Printed: 11/12/2013

	Hydrotech Drainage		Copyright 2006	Page 1/1
PROFILER	Ph:03 366 1568	www.cleanflowsystems.com		Printed: 11/12/2013

Ovality Observations Report

Hydrotech Drainage Copyright 2006 Page 1/1 PROFILER Printed: 11/12/2013 Ph:03 366 1568 www.cleanflowsystems.com

Ovality Observations Report

Ph: 03 366 1568

1868

www.cleanflowsystems.com

 Hydrotech Drainage
 Copyright 2006
 Page 1/1

 Ph:03 366 1568
 www.cleanflowsystems.com
 Printed: 11/12/2013

HydroTech

Ovality Summary Report

Copyright 2006

Page 1

www.cleanflowsystems.com

Hydrotech Drainage Ph: 03 366 1568

Comments

Ovality Analysis Report

90% - Fractile: 1.8%

16.61m

HydroTech

PROFILER

Ph: 03 366 1568

Ovality Observations Report

www.cleanflowsystems.com

Printed: 19/11/2013

-
Ovality Observations Report

PROFILER

Hydrotech Drainage Ph: 03 366 1568

www.cleanflowsystems.com

Copyright 2006 Page: 2/3

Printed: 19/11/2013

Ovality Observations Report

 PROFILER
 Hydrotech Drainage
 Copyright 2006
 Page: 3/3

 Ph: 03 366 1568
 www.cleanflowsystems.com
 Printed: 19/11/2013

PROFILER

Hydrotech Drainage Ph:03 366 1568

www.cleanflowsystems.com

Copyright 2006

Printed: 19/11/2013

Page 1/1

Ovality Analysis Report

CONTINUEN

Ovality Observations Report

 PROFILER
 Hydrotech Drainage
 Copyright 2006
 Page: 1/2

 Ph: 03 366 1568
 www.cleanflowsystems.com
 Printed: 19/11/2013

Ph: 03 366 1568

Ovality Observations Report

www.cleanflowsystems.com

Printed: 19/11/2013

Ovality Summary Report

Ph:03 366 1568

www.cleanflowsystems.com

Copyright 2006

Ovality Observations Report

Ovality Observations Report

Ovality Summary Report

Hydrotech Drainage PROFILER

Ph:03 366 1568

www.cleanflowsystems.com

Copyright 2006 Page 1/1 Printed: 19/11/2013

Ovality Observations Report

Hydrotech Drainage Ph: 03 366 1568

www.cleanflowsystems.com

Printed: 19/11/2013

Η

Appendix H Uplift Calculations

Trial DESIGN assumptions

Assessment Trial No. 3 - Pressure sewer with permeable backfill 22/01/2014

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber below GWI	0.47	m ³	
	0.47	3	
Volume of concrete ring foundation	0.15	m	
Unsaturated Unit weight of backfill	18	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	kN/m ³	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	24.5	kN/m ³	
Depth of Piezometer	1.97	m	
Peak Net Piezometer Pressure	8.2	kPa	
Equivalent Pore water Pressure within			
backfill	14.0	kN/m ³	Liquefied = ~18kN/m ³
Weight of water within Chamber	0	kg	
Weight of Chamber and Equipment	75	kg	
Weight of concrete foundation	369	kg	
Angle of friction of backfill	32	0	
Angle of friction of topsoil	30	0	
Plan area of chamber	0.56	m ²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.85	m	
Thickness of Topsoil	0.3	m	
Height of concrete base ring	0.2	m	
Diameter of base flange	1.19	m	
Width of backfill a	1.60	m	
Width of backfill b	1.60	m	
Depth to ground water level	1.00	m	
Liquefaction within Backfill (Y/N)	N		

Action	Description	Layer Height	Average Area	Average	Force			
		(m)	(m²)	Volume (m ³)	(kN)			
Factored Uplift force	Static Buoyant Force: Weight of fluid di	Static Buoyant Force: Weight of fluid displaced by impermeable components of chamber						
	Seismic: Excess pore pressure	Seismic: Excess pore pressure						
	Seepage Force assumed to be 5% of Bu	Seepage Force assumed to be 5% of Buoyant force						
	Total				11.18			
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.56	0.17	2.84			
	Wedge A (W) - topsoil below GWL	0.00	0.56	0.00	0.00			
	Wedge B (W) - backfill above GWL	0.70	0.56	0.39	7.01			
	Wedge B (W) - backfill below GWL	0.65	0.56	0.36	1.46			
	Shear resistance within topsoil - above	0.83						
	Shear resistance within topsoil - below	0.00						
	Shear resistance within granular backfil	8.76						
	Shear resistance within granular backfil	13.57						
	Weight of tank and concrete base (W)	4.35						
	Total	38.81						
Resisting force - Method B	Wedge C - topsoil above GWL	0.30	1.45	0.44	7.42			
	Wedge C - Topsoil below GWL	0.00	1.45	0.00	0.00			
	Wedge D - backfill above GWL	0.70	1.45	1.02	18.33			
	Wedge D - Backfill below GWL	0.28	1.45	0.41	1.64			
	Wedge E - Backfill below GWL	0.37	1.01	0.37	1.50			
	Weight of tank and concrete base (W)							
	Total				33.23	Critical Ca		

Ko	Δσ _v ' (kPa)	δ (°)
0.50	5.1	30
0.50	0	30
0.47	12.6	32
0.47	2.6	32

0.36983

W+Q

-	
Alleria	
- (())	

Factor of Safety (FOS) against uplift

Trial DESIGN assumptions

Assessment Trial No. 4 - Pressure sewer with natural backfill

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber		2	
below GWL	0.47	m°	
Volume of concrete ring foundation	0.14	m³	
Unsaturated Unit weight of backfill	17	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	, kN/m³	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	24.5	kN/m ³	
Depth of Piezometer	1.9	m	
Peak Net Piezometer Pressure	15.6	kPa	
Equivalent Pore water Pressure within			
backfill	18.0	kN/m³	Liquefied = ~18kN/m ³
Weight of water within Chamber	30	ka	
Weight of Chamber and Equipment	75	kø	
Weight of concrete foundation	359	kg	
Angle of friction of backfill	34	0	
Angle of friction of topsoil	30	o	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.3	m	
Height of concrete base ring	0.205	m	
Diameter of base flange	1.17	m	
Width of backfill a	1.80	m	
Width of backfill b	2.40	m	
Depth to ground water level	1.00	m	
Liquefaction within Backfill (Y/N)	Y		

Action	Description	Layer Height	Average Area	Average	Force
		(m)	(m ²)	Volume (m ³)	(kN)
Factored Uplift force	Buoyant Force: Weight of fluid displaced	by impermeable c	omponents of ch	amber	6.0
	Seismic: Excess pore pressure				8.6
	Seepage Force assumed to be 5% of Buoy	ant force			0.74
	Total				15.4
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.52	0.16	2.6
	Wedge A (W) - topsoil below GWL	0.00	0.52	0.00	0.0
	Wedge B (W) - backfill above GWL	0.70	0.52	0.36	6.1
	Wedge B (W) - backfill below GWL	0.65	0.52	0.34	0.0
	Shear resistance within topsoil - above G	WL			0.8
	Shear resistance within topsoil - below G	WL			0.0
	Shear resistance within granular backfill -	above GWL			8.4
	Shear resistance within granular backfill -	below GWL			0.0
	Weight of tank and concrete base (W)				4.5
	Total				22.6
Resisting force - Method B					

Ko	Δ σ ,' (kPa)	δ (°)		
0.50	5.1	30	₩	
0.50	0	30		\mathbf{U}

FOS = 1.47

Trial DESIGN assumptions

Assessment Trial No. 5 - Standard precast concrete manhole with CCC AP65 backfill

mfg

Assessment of FOS to Buoyant Uplift

Volume of chamber	3.07	m ³			
Volume of chamber below GWL	1.95	m³			
Volume of concrete ring foundation	0.10	m³			0.3
Unsaturated Unit weight of backfill	21	kN/m ³			
Saturated Unit weight of backfill	22	kN/m ³			0.7
Unsaturated unit weight of topsoil	17	kN/m ³			
Saturated unit weight of topsoil	18	kN/m ³			
Unit weight of concrete	24.5	kN/m ³			G
Depth of Peizometer	2.82	m			
Peak Net Piezometer Pressure	23.2	kPa			
Equivalent Pore water Pressure within					
backfill	18.0	kN/m ³	Liquefied = ~18kN/m ³		
Weight of water within Chamber	0	kg	Item	Weight (kg)	Volume (m ³)
Weight of Chamber and Equipment	2289	kg	Lid	541	0.280
Weight of concrete foundation	238	kg	Riser	1328	2.620
Angle of friction of backfill	34	0	Base	419	0.168
Angle of friction of topsoil	30	0		2289	3.07
Plan area of chamber	1.12	m²			
Typical width of chamber	1.194	m			
Base width of chamber	1.194	m			
Depth to base of chamber	2.74	m			
Thickness of Topsoil	0.3	m			
Height of concrete base ring	0.15	m			
Diameter of base flange	1.495	m			
Width of backfill a	2.50	m			
Width of backfill b	2.50	m			
Depth to ground water level	1.00	m			
Liquefaction within Backfill (Y/N)	N				

1.495

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)			
Factored Uplift force	Buoyant Force: Weight of fluid displace	Buoyant Force: Weight of fluid displaced by impermeable components of chamber						
	Seismic: Excess pore pressure	Seismic: Excess pore pressure						
	Seepage Force assumed to be 5% of Bu	eepage Force assumed to be 5% of Buoyant force						
	Total				48.33			
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.64	0.19	3.24			
	Wedge A (W) - topsoil below GWL	0.00	0.64	0.00	0.00			
	Wedge B (W) - backfill above GWL	0.70	0.64	0.44	9.34			
	Wedge B (W) - backfill below GWL	1.59	0.64	1.01	4.00			
	Snear resistance within topsoil - above	Shear resistance within topsoil - above GWL						
	Shear resistance within topsoil - below	Shear resistance within topsoil - below GWL						
	Shear resistance within granular backfil	Shear resistance within granular backfill - above GWL						
	Shear resistance within granular backfil	Shear resistance within granular backfill - below GWL						
	Weight of tank and concrete base (W)	Weight of tank and concrete base (W)						
	Total	Total						
Resisting force - Method B	Wedge C - topsoil above GWL	0.30	3.79	1.14	19.32			
	Wedge C - Topsoil below GWL	0.00	3.79	0.00	0.00			
	Wedge D - backfill above GWL	0.70	3.79	2.65	55.70			
	Wedge D - Backfill below GWL	0.64	3.79	2.44	9.68	F		
	Wedge E - Backfill below GWL	0.95	2.21	2.09	8.29			
	Weight of tank and concrete base (W)	Weight of tank and concrete base (W)						
	Total	Total						

ĸ	Δσ _v ' (kPa)	δ (°
0.50	5.1	30
0.50	0	30
0.44	14 7	34

6.3

0.945065

34

0.44

H =

-

	A ALLEY

FOS = 2.18

Trial DESIGN assumptions

Assessment Trial No. 6 - PE manhole with CCC AP65 backfill 22/01/2014

mfg

Assessment of FOS to Buoyant Uplift

		3			
Volume of chamber	0.96	m			
Volume of chamber below GWL	0.47	m³			-
Volume of concrete ring foundation	0.04	m³			0.30 🗘
Upperturbed Upit weight of healifill	21	LAL/m ³			^
Unsaturated Unit weight of backfill	21	KIN/III			0.70
Saturated Unit weight of backfill	22	KN/m			0.70
Unsaturated unit weight of topsoil	17	kN/m²			
Saturated unit weight of topsoil	18	kN/m³			
Unit weight of PE flange	18	kN/m ³			Groundwate
Depth of Piezometer	2.53	m			
Peak Net Piezometer Pressure	20.72	kPa			
Equivalent Pore water Pressure within					
backfill	18.0	kN/m³	Liquefied = ~18kN/m ³		
Weight of water within Chamber	0	kg	Item	Weight (kg)	Volume (m ³)
Weight of Chamber and Equipment	621	kg	Lid	541	0.280
Weight of concrete foundation	65	kg	Riser	80	0.679
Angle of friction of backfill	34	0	Base	0	0.000
Angle of friction of topsoil	30	0		621	0.96
Plan area of chamber	0.28	m²			
Typical width of chamber	0.600	m			
Base width of chamber	0.6	m			
Depth to base of ring	1.8	m			
Depth to base of chamber	2.47	m			
Thickness of Topsoil	0.3	m			
Height of concrete base ring	0.1	m			
Diameter of base flange	0.9	m			
Width of backfill a	1.80	m			
Width of backfill b	1.80	m			
Depth to ground water level	1.00	m			
Liquefaction within Backfill (Y/N)	N				

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)		
Factored Uplift force	Buoyant Force: Weight of fluid displace	d by impermeable co	mponents of cha	mber	4.92		
	Seismic: Excess pore pressure				5.86		
	Seepage Force assumed to be 5% of Bu	oyant force			0.54		
	Total				11.32		
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.35	0.11	1.80		
	Wedge A (W) - topsoil below GWL	0.00	0.35	0.00	0.00		
	Wedge B (W) - backfill above GWL	0.70	0.35	0.25	5.20		
	Wedge B (W) - backfill below GWL	0.70	0.35	0.25	0.99		
	Shear resistance within topsoil - above	Shear resistance within topsoil - above GWL					
	Shear resistance within topsoil - below	0.00					
	Shear resistance within granular backfil	7.33					
	Shear resistance within granular backfil	12.48					
	Weight of tank and concrete base (W)	6.73					
	Total				35.14	Critical Case	
Resisting force - Method B	Wedge C - topsoil above GWL	0.30	2.26	0.68	11.54		
	Wedge C - Topsoil below GWL	0.00	2.26	0.00	0.00		
	Wedge D - backfill above GWL	0.55	2.26	1.25	26.30		
	Wedge D - Backfill below GWL	0.00	2.26	0.00	0.00	I	
	Wedge E - Backfill below GWL	0.85	1.31	1.11	4.43		
	Weight of tank and concrete base (W)				6.73		
	Total				48.99		

Ko	Δσ _v ' (kPa)	δ (°)

0.50

0.50

0.44

0.44

H =

1.8

1000mb
ALL LUP

3.10 FOS =

0.846327

Trial DESIGN assumptions

Assessment Trial No. 7 - Pressure sewer with concrete backfill

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber			
below GWL	0.47	m³	
Volume of concrete foundation	1.57	m³	
I Insaturated I Init weight of backfill	17	kN/m ³	
Coturated Unit weight of backfill	10	kN/m ³	
Saturated offic weight of backfill	10	LINI /	
Unsaturated unit weight of topsoil	17	KN/m	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	22	kN/m³	
Depth of Piezometer	1.9	m	
Peak Net Piezometer Pressure	15.6	kPa	
Equivalent Pore water Pressure within			
backfill	18.0	kN/m³	Liquefied = ~18kN/m ³
Weight of water within Chamber	0	kg	
Weight of Chamber and Equipment	75	kg	
Weight of concrete foundation	3514	kg	
Angle of friction of backfill	34	0	
Angle of friction of topsoil	30	0	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.3	m	
Height of concrete base ring	1.555	m	
Diameter of base flange	1.25	m	
Width of backfill a	1.25	m	
Width of backfill b	1.25	m	
Depth to ground water level	1.00	m	
Liquefaction within Backfill (Y/N)	N		

0.69

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)	
Factored Uplift force	Buoyant Force: Weight of fluid displace	ed by impermeable c	omponents of cha	amber	20.03	
	Seismic: Excess pore pressure				8.65	
	Seepage Force assumed to be 5% of Bu	uoyant force			1.43	
	Total				30.11	
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.67	0.20	3.43	
	Wedge A (W) - topsoil below GWL	0.00	0.67	0.00	0.00	
	Wedge B (W) - backfill above GWL	0.70	0.67	0.47	8.00	
	Wedge B (W) - backfill below GWL	-0.70	0.67	-0.47	0.01	
	Shear resistance within topsoil - above	Shear resistance within topsoil - above GWL				
	Shear resistance within topsoil - below	0.00				
	Shear resistance within granular backf	9.03				
	Shear resistance within granular backf	0.00				
	Weight of tank and concrete base (W)					
	Total				56.55	
Resisting force - Method B	Wedge C - topsoil above GWL	0.30	0.67	0.20	3.43	
	Wedge C - Topsoil below GWL	0.00	0.67	0.00	0.00	
	Wedge D - backfill above GWL	0.00	0.67	0.00	0.00	
	Wedge D - Backfill below GWL	0.00	0.67	0.00	0.00	ŀ
	Wedge E - Backfill below GWL	0.00	0.67	0.00	0.00	
	Weight of tank and concrete base (W)				35.21	
	Total				38.64	Critical Case

0

wc	
WD	
WE	

FOS = 1.28

Assessment Trial No. 3 - Pressure sewer with permeable backfill - initial

0.97 m

mfg

22/01/2014

	Assessment of	of FOS to	Buoyant	<u>: Uplift</u>
--	---------------	-----------	---------	-----------------

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber			
below GWL	0.55	m³	
Volume of concrete ring foundation	0.14	m³	
Unsaturated Unit weight of backfill	18	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	kN/m ³	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	24.5	kN/m ³	
Depth of Piezometer	1.97	m	
Peak Net Piezometer Pressure	9.5	kPa	0.97 ו
Equivalent Pore water Pressure within			
backfill	14.6	kN/m³	Liquefied = ~18kN/m ³
Weight of water within Chamber	39	kg	0.38
Weight of Chamber and Equipment	75	kg	0.74
Weight of concrete foundation	359	kg	3.52
Angle of friction of backfill	32	0	
Angle of friction of topsoil	30	0	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.5	m	
Height of concrete base ring	0.205	m	
Diameter of base flange	1.17	m	
Width of backfill a	1.80	m	
Width of backfill b	1.80	m	
Depth to ground water level	0.87	m	
Liquefaction within Backfill (Y/N)	N		

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)	
Factored Uplift force	Static Buoyant Force: Weight of fluid d	isplaced by imperme	able components	of chamber	6.77	
	Seismic: Excess pore pressure				5.27	
	Seepage Force assumed to be 5% of Bu	oyant force			0.60	
	Total				12.64	
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.50	0.52	0.26	4.42	
	Wedge A (W) - topsoil below GWL	0.00	0.52	0.00	0.00	
	Wedge B (W) - backfill above GWL	0.37	0.52	0.19	3.47	
	Wedge B (W) - backfill below GWL	0.78	0.52	0.41	1.37	
	Shear resistance within topsoil - above	Shear resistance within topsoil - above GWL				
	Shear resistance within topsoil - below	0.00				
	Shear resistance within granular backfi	4.73				
	Shear resistance within granular backfi	13.87				
	Weight of tank and concrete base (W)	4.64				
	Total				34.75	Critical Cas
Resisting force - Method B	Wedge C - topsoil above GWL	0.50	1.99	0.99	16.91	
	Wedge C - Topsoil below GWL	0.00	1.99	0.00	0.00	
	Wedge D - backfill above GWL	0.37	1.99	0.74	13.25	
	Wedge D - Backfill below GWL	0.21	1.99	0.42	1.42	
	Wedge E - Backfill below GWL	0.57	1.26	0.71	2.40	
	Weight of tank and concrete base (W)				4.64	
	Total				38.63	

	Ko	$\Delta \sigma_{v}$ ' (kPa)	δ(°)
C	0.50	8.5	30
0	0.50	0	30

6.66

2.6

0.568275

30 32

32

0.47

0.47

	at filter

ASBUILT Condition and measured uplift pressure

Assessment Trial No. 3 - Pressure sewer with permeable backfill - final, pressure equalisation

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber below GWL	1.03	m³	
Volume of concrete ring foundation	0.14	m³	
Unsaturated Unit weight of backfill	18	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	kN/m ³	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	24.5	kN/m ³	
Depth of Piezometer	1.97	m	
Peak Net Piezometer Pressure	0	kPa	
Equivalent Pore water Pressure within			
backfill	9.8	kN/m³	Liquefied = ~18kN/m ³
Weight of water within Champer	30	ka	
Weight of Chamber and Equipment	75	kg	
Weight of concrete foundation	359	kg	
Angle of friction of backfill	32	0	
Angle of friction of topsoil	30	0	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.5	m	
Height of concrete base ring	0.205	m	
Diameter of base flange	1.17	m	
Width of backfill a	1.80	m	
Width of backfill b	1.80	m	
Depth to ground water level	0.00	m	
Liquefaction within Backfill (Y/N)	N		

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)		
Factored Uplift force	Buoyant Force: Weight of fluid displace	d by impermeable co	omponents of cha	amber	11.50		
	Seismic: Excess pore pressure				0.00		
	Seepage Force assumed to be 5% of Bu	ioyant force			0.00		
	Total				11.50		
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.00	0.52	0.00	0.00		
	Wedge A (W) - topsoil below GWL	0.50	0.52	0.26	2.13		
	Wedge B (W) - backfill above GWL	0.00	0.52	0.00	0.00		
	Wedge B (W) - backfill below GWL	1.15	0.52	0.60	4.90		
	Shear resistance within topsoil - above		0.00				
	Shear resistance within topsoil - below	1.09					
	Shear resistance within granular backfi	0.00					
	Shear resistance within granular backfi	Shear resistance within granular backfill - below GWL					
	Weight of tank and concrete base (W)	4.64					
	Total	26.23	Critical Case				
Resisting force - Method B	Wedge C - topsoil above GWL	0.00	1.99	0.00	0.00		
	Wedge C - Topsoil below GWL	0.50	1.99	0.99	8.15		
	Wedge D - backfill above GWL	0.00	1.99	0.00	0.00		
	Wedge D - Backfill below GWL	0.58	1.99	1.16	9.48	ŀ	
	Wedge E - Backfill below GWL	0.57	1.26	0.71	5.84		
	Weight of tank and concrete base (W)				4.64		
	Total				28.11		

Ko	Δ σ _v ' (kPa)	δ (°)

0.568275

	A DECEMBER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNE OWNER OWNE OWNE OWNE OWNER OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNE OWNE
í	NUMBER
	The lot be lief of

FOS = 2.28

ASBUILT Condition and measured uplift pressure

Assessment Trial No. 4 - Pressure sewer with natural backfill

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
Volume of pressure sewer chamber below GWL	0.54	m³	
Volume of concrete ring foundation	0.14	m³	
Unsaturated Unit weight of backfill	17	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	kN/m ³	
Saturated unit weight of topsoil	18	kN/m ³	
Unit weight of concrete	24.5	kN/m ³	
Depth of Piezometer	1.9	m	
Peak Net Piezometer Pressure	25	kPa	
Equivalent Pore water Pressure within			
backfill	23.0	kN/m³	Liquefied = ~18kN/m ³
Weight of water within Chamber	20	ka	
Weight of Chamber and Equipment	30	kg	
Weight of concrete foundation	359	ka	
Angle of friction of backfill	34	0	
Angle of friction of topsoil	30	o	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.3	m	
Height of concrete base ring	0.205	m	
Diameter of base flange	1.17	m	
Width of backfill a	1.80	m	
Width of backfill b	2.40	m	
Depth to ground water level	0.88	m	
Liquefaction within Backfill (Y/N)	Y		

Action	Description	Layer Height	Average Area	Average	Force		
		(m)	(m ²)	Volume (m ³)	(kN)		
Factored Uplift force	Buoyant Force: Weight of fluid displaced b	y impermeable co	omponents of ch	amber	6.72		
	Seismic: Excess pore pressure				13.87		
	Seepage Force assumed to be 5% of Buoya	page Force assumed to be 5% of Buoyant force					
	Total				21.61		
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.30	0.52	0.16	2.65		
	Wedge A (W) - topsoil below GWL	0.00	0.52	0.00	0.00		
	Wedge B (W) - backfill above GWL	0.58	0.52	0.30	5.13		
	Wedge B (W) - backfill below GWL	0.77	0.52	0.40	0.00		
	Shear resistance within topsoil - above GW	hear resistance within topsoil - above GWL					
	Shear resistance within topsoil - below GWL						
	Shear resistance within granular backfill - above GWL						
	Shear resistance within granular backfill - I	iear resistance within granular backfill - below GWL					
	Weight of tank and concrete base (W)				4.55		
	Total				19.51		
Resisting force - Method B							

FOS = 0.90

ASBUILT Condition and measured uplift pressure

Assessment Trial No. 5 - Standard precast concrete manhole with CCC AP65 backfill

mfg

Assessment of FOS to Buoyant Uplift

Volume of chamber	3.07 m ³				-	\sim
Volume of chamber below GWL	1.89 m ³			_		
Volume of concrete ring foundation	0.10 m ³			0.00		
					Total Solo	
Unsaturated Unit weight of backfill	21 kN/m ³				↑	
Saturated Unit weight of backfill	22 kN/m ³			1.05	888888888	Chamber
Unsaturated unit weight of topsoil	17 kN/m ³				88888888	
Saturated unit weight of topsoil	18 kN/m ³					
Unit weight of concrete	24.5 kN/m ³			Groun	ndwater Level	
Depth of Peizometer	2.82 m				888888888888888888888888888888888888888	
Peak Net Piezometer Pressure	8.8 kPa				888888888	
Equivalent Pore water Pressure within					88888888	
backfill	12.9 kN/m ³	Liquefied = ~18kN/m ³				
Weight of water within Champer	0 kg	Item	Weight (kg)	volume (m)		
Weight of Chamber and Equipment	2289 kg	LIC	1228	0.280	888888888888888888888888888888888888888	
	238 Kg	Riser	1328	2.620	88888888	
Angle of friction of backfill	34	Base	419	0.168		
Angle of friction of topsoil	30 °		2289	3.07	8888	
Plan area of chamber	1.12 m ²				8888	
Typical width of chamber	1.194 m				888888888	::::::::::::::::::::::::::::::::::::::
Base width of chamber	1.194 m					
Depth to base of chamber	2.74 m				888888888888888888888888888888888888888	
Thickness of Topsoil	0 m				000000000000000000000000000000000000000	200000000000000000000000000000000000000
Height of concrete base ring	0.15 m					1.19
Diameter of base flange	1.495 m				-	
Width of backfill a	2.50 m					1.194
Width of backfill b	<mark>2.50</mark> m				-	
Depth to ground water level	1.05 m				L. L.	1.495
Liquefaction within Backfill (Y/N)	N					

Action	Description	Layer Height	Average Area	Average	Force			
		(m)	(m ²)	Volume (m ³)	(kN)			
Factored Uplift force	Buoyant Force: Weight of fluid displaced	d by impermeable c	omponents of ch	amber	19.50			
	Seismic: Excess pore pressure	smic: Excess pore pressure						
	Seepage Force assumed to be 5% of Buc	oyant force			1.47			
	Total				30.82			
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.00	0.64	0.00	0.00			
	Wedge A (W) - topsoil below GWL	0.00	0.64	0.00	0.00			
	Wedge B (W) - backfill above GWL	1.05	0.64	0.67	14.01			
	Wedge B (W) - backfill below GWL	1.54	0.64	0.98	8.88			
	Shear resistance within topsoil - above 0	GWL			0.00			
	Shear resistance within topsoil - below 0	GWL			0.00			
	Shear resistance within granular backfill	- above GWL			16.17			
	Shear resistance within granular backfill	- below GWL			62.44			
	Weight of tank and concrete base (W)				24.79			
	Total				126.28	Critical Case		
Resisting force - Method B	Wedge C - topsoil above GWL	0.00	3.79	0.00	0.00			
	Wedge C - Topsoil below GWL	0.00	3.79	0.00	0.00			
	Wedge D - backfill above GWL	1.05	3.79	3.98	83.54			
	Wedge D - Backfill below GWL	0.59	3.79	2.25	20.44	ŀ		
	Wedge E - Backfill below GWL	0.95	2.21	2.09	18.96]		
	Weight of tank and concrete base (W)	24.79						
	Total				147.74			

Ko	Δσ _v ' (kPa)	δ(°)
0.50	0	30
0.50	0	30

22.05

14.0

0.945065

34

34

0.44

0.44

H =

₿Ť.

U

		U
_	-	A A A A A A A A A A A A A A A A A A A

Extended foundation

FOS = 4.10

ASBUILT Condition and measured uplift pressure

Assessment Trial No. 6 - PE manhole with CCC AP65 backfill 22/01/2014

mfg

Assessment of FOS to Buoyant Uplift

Volume of chamber	0.96	m ³				
Volume of chamber below GWL	0.37	m³				
Volume of concrete ring foundation	0.04	m³			0.00	b \$
Upsaturated Upit weight of backfill	21	kN/m ³				III
Contracted Office Weight of backfill	21	kin/iii			4.24	
Saturated Unit weight of backfill	22	KIN/M			1.34	•
Unsaturated unit weight of topsoil	17	kN/m ²				
Saturated unit weight of topsoil	18	kN/m ³				
Unit weight of PE flange	18	kN/m ³			Gro	oundwater Level
Depth of Piezometer	2.53	m				
Peak Net Piezometer Pressure	14	kPa				
Equivalent Pore water Pressure within						
backfill	15.3	kN/m³	Liquefied = ~18kN/m ³			
Weight of water within Chamber	0	kg	Item	<u>Weight (kg)</u>	Volume (m ³)	
Weight of Chamber and Equipment	621	kg	Lid	541	0.280	
Weight of concrete foundation	65	kg	Riser	80	0.679	
Angle of friction of backfill	34	o	Base	0	0.000	_
Angle of friction of topsoil	30	0	_	621	0.96	_
Plan area of chamber	0.28	m²				
Typical width of chamber	0.600	m				
Base width of chamber	0.6	m				
Depth to base of ring	1.8	m				
Depth to base of chamber	2.47	m				
Thickness of Topsoil	0	m				
Height of concrete base ring	0.1	m				
Diameter of base flange	0.9	m				
Width of backfill a	1.95	m				
Width of backfill b	2.30	m				
Depth to ground water level	1.34	m				
Liquefaction within Backfill (Y/N)	N					

		Cł	amber	
'Level	Ţ			-
			🕈 ррт	
		<	0.60	
	-	0.9		

Action	Description	Layer Height (m)	Average Area (m ²)	Average Volume (m ³)	Force (kN)	
Factored Uplift force	Buoyant Force: Weight of fluid displaced by impermeable components of chamber				3.98	
	Seismic: Excess pore pressure				3.96	
	Seepage Force assumed to be 5% of Bu	oyant force			0.40	
	Total				8.34	
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.00	0.35	0.00	0.00	
	Wedge A (W) - topsoil below GWL	0.00	0.35	0.00	0.00	
	Wedge B (W) - backfill above GWL	1.34	0.35	0.47	9.95	
	Wedge B (W) - backfill below GWL	0.36	0.35	0.13	0.85	
	Shear resistance within topsoil - above GWL					
	Shear resistance within topsoil - below GWL					
	Shear resistance within granular backfill - above GWL					
	Shear resistance within granular backfill - below GWL					
	Weight of tank and concrete base (W)					
	Total				42.25	Critical Case
Resisting force - Method B	Wedge C - topsoil above GWL	0.00	3.26	0.00	0.00	
	Wedge C - Topsoil below GWL	0.00	3.26	0.00	0.00	
	Wedge D - backfill above GWL	0.55	3.26	1.79	37.56	
	Wedge D - Backfill below GWL	0.00	3.26	0.00	0.00	ŀ
	Wedge E - Backfill below GWL	1.15	1.81	2.08	13.87	
	Weight of tank and concrete base (W)				6.73	
	Total				58.16	

Ko	Δ σ _v ' (kPa)	δ (°)
0.50	0	30
0.50	0	30
0.44	28.14	34

2.4

1.151945

34

0.44

H =

1.8

\mathbf{O}

ANTIDA

ASBUILT Condition and measured uplift pressure

Assessment Trial No. 7 - Pressure sewer with concrete backfill 22/01/2014

mfg

Assessment of FOS to Buoyant Uplift

Volume of pressure sewer chamber	1.03	m³	
below GWL	0.64	m³	
Volume of concrete ring foundation	1.35	m³	
Unsaturated Unit weight of backfill	17	kN/m ³	
Saturated Unit weight of backfill	18	kN/m ³	
Unsaturated unit weight of topsoil	17	kN/m ³	
Saturated unit weight of tonsoil	18	kN/m ³	
Unit weight of concrete	15.2	kN/m^3	Lab massured
Denth of Piezometer	19.2	m	Lab measureu
Peak Net Piezometer Pressure	30	kPa	
Equivalent Pore water Pressure within	50	KI U	
backfill	25.6	kN/m ³	Liquefied = ~18kN/m ³
Weight of water within Chamber	19	kg	
Weight of Chamber and Equipment	75	kg	
Weight of concrete foundation	2085	kg	
Angle of friction of backfill	34	0	
Angle of friction of topsoil	30	0	
Plan area of chamber	0.55	m²	
Typical width of chamber	0.84	m	
Base width of chamber	0.69	m	
Depth to base of chamber	1.855	m	
Thickness of Topsoil	0.83	m	
Height of concrete base ring	1.025	m	
Diameter of base flange	1.54	m	
Width of backfill a	1.54	m	Equivalent diameter (1.5
Width of backfill b	1.54	m	Area =
Depth to ground water level	0.70	m	Equivalent diameter =
Liquefaction within Backfill (Y/N)	N		

Action	Description	Layer Height	Average Area	Average	Force	
		(m)	(m²)	Volume (m ²)	(KN)	
Factored Uplift force	Buoyant Force: Weight of fluid displaced	by impermeable co	mponents of cha	mber	19.49	
	Seismic: Excess pore pressure				16.64	
	Seepage Force assumed to be 5% of Buo	yant force			1.81	
	Total				37.93	
Resisting force - Method A	Wedge A (W) - topsoil above GWL	0.70	1.31	0.92	15.62	
	Wedge A (W) - topsoil below GWL	0.13	1.31	0.17	0.00	
	Wedge B (W) - backfill above GWL	0.00	1.31	0.00	0.00	
	Wedge B (W) - backfill below GWL	0.00	1.31	0.00	0.00	
	Shear resistance within topsoil - above GWL				1.08	
	Shear resistance within topsoil - below GWL					
	Shear resistance within granular backfill - above GWL					
	Shear resistance within granular backfill - below GWL					
	Weight of tank and concrete base (W)					
	Total				38.08	
Resisting force - Method B	Wedge C - topsoil above GWL	0.70	1.31	0.92	15.62	
	Wedge C - Topsoil below GWL	0.13	1.31	0.17	0.00	
	Wedge D - backfill above GWL	0.00	1.31	0.00	0.00	
	Wedge D - Backfill below GWL	0.00	1.31	0.00	0.00	ł
	Wedge E - Backfill below GWL	0.00	1.31	0.00	0.00	
	Weight of tank and concrete base (W)				21.38	
	Total				37.00	Critical Case

Ko	Δ σ _v ' (kPa)	δ (°)
0.50	11.9	30
0.50	0	30

0

	Q

 $Fs = \frac{W + Q}{Us + Ud + F}$

H =

0.98